These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24509097)

  • 21. Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: bioremediation via facultative methanotrophy.
    Im J; Semrau JD
    FEMS Microbiol Lett; 2011 May; 318(2):137-42. PubMed ID: 21362021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA).
    Mundle SO; Johnson T; Lacrampe-Couloume G; Pérez-de-Mora A; Duhamel M; Edwards EA; McMaster ML; Cox E; Révész K; Sherwood Lollar B
    Environ Sci Technol; 2012 Feb; 46(3):1731-8. PubMed ID: 22201221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms and strategies of microbial cometabolism in the degradation of organic compounds - chlorinated ethylenes as the model.
    Luo W; Zhu X; Chen W; Duan Z; Wang L; Zhou Y
    Water Sci Technol; 2014; 69(10):1971-83. PubMed ID: 24845311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes.
    van Hylckama Vlieg JE; Janssen DB
    J Biotechnol; 2001 Feb; 85(2):81-102. PubMed ID: 11165358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential application of electron donors and humic acids for the anaerobic bioremediation of chlorinated aliphatic hydrocarbons.
    Scherr KE; Nahold MM; Lantschbauer W; Loibner AP
    N Biotechnol; 2011 Dec; 29(1):116-25. PubMed ID: 21600322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nature cure: bioremediation as a sustainable solution for polluted sites.
    Shekhar C
    Chem Biol; 2012 Mar; 19(3):307-8. PubMed ID: 22444583
    [No Abstract]   [Full Text] [Related]  

  • 27. Priority pollutant degradation by the facultative methanotroph, Methylocystis strain SB2.
    Jagadevan S; Semrau JD
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5089-96. PubMed ID: 22851017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.
    Pérez-Pantoja D; De la Iglesia R; Pieper DH; González B
    FEMS Microbiol Rev; 2008 Aug; 32(5):736-94. PubMed ID: 18691224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From PCBs to highly toxic metabolites by the biphenyl pathway.
    Cámara B; Herrera C; González M; Couve E; Hofer B; Seeger M
    Environ Microbiol; 2004 Aug; 6(8):842-50. PubMed ID: 15250886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The key role of chlorocatechol 1,2-dioxygenase in phytoremoval and degradation of catechol by transgenic Arabidopsis.
    Liao Y; Zhou X; Yu J; Cao Y; Li X; Kuai B
    Plant Physiol; 2006 Oct; 142(2):620-8. PubMed ID: 16935988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 'Super bugs' for bioremediation.
    Furukawa K
    Trends Biotechnol; 2003 May; 21(5):187-90. PubMed ID: 12727376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudomonas aeruginosa strain RW41 mineralizes 4-chlorobenzenesulfonate, the major polar by-product from DDT manufacturing.
    Blasco R; Ramos JL; Wittich RM
    Environ Microbiol; 2008 Jun; 10(6):1591-600. PubMed ID: 18331335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role.
    Liang B; Jiang J; Zhang J; Zhao Y; Li S
    Crit Rev Microbiol; 2012 May; 38(2):95-110. PubMed ID: 21967404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Microbial degradation of aromatic compounds].
    Lingens F
    Schriftenr Ver Wasser Boden Lufthyg; 1989; 80():39-60. PubMed ID: 2658038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Environmental chemicals and their microbial breakdown (author's transl)].
    Lingens F
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):114-26. PubMed ID: 793259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes - a review.
    Chowdhury P; Viraraghavan T
    Sci Total Environ; 2009 Apr; 407(8):2474-92. PubMed ID: 19200588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotransformation of progesterone by Aspergillus nidulans VKPM F-1069 (wild type).
    Savinova OS; Solyev PN; Vasina DV; Tyazhelova TV; Fedorova TV; Savinova TS
    Steroids; 2019 Sep; 149():108421. PubMed ID: 31176657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway.
    Blasco R; Wittich RM; Mallavarapu M; Timmis KN; Pieper DH
    J Biol Chem; 1995 Dec; 270(49):29229-35. PubMed ID: 7493952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ormosil gels doped with engineered catechol 1,2 dioxygenases for chlorocatechol bioremediation.
    Micalella C; Caglio R; Mozzarelli A; Valetti F; Pessione E; Giunta C; Bruno S
    Biotechnol Appl Biochem; 2014; 61(3):297-303. PubMed ID: 24571591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of Three New Phytotoxins from the Fungus
    Liao L; Zhang X; Lou Y; Zhou C; Yuan Q; Gao J
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30708999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.