These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24509246)

  • 1. Computational modeling of subcellular transport and signaling.
    Hake J; Kekenes-Huskey PM; McCulloch AD
    Curr Opin Struct Biol; 2014 Apr; 25():92-7. PubMed ID: 24509246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation.
    Yang PC; Boras BW; Jeng MT; Docken SS; Lewis TJ; McCulloch AD; Harvey RD; Clancy CE
    PLoS Comput Biol; 2016 Jul; 12(7):e1005005. PubMed ID: 27409243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes.
    Best JM; Kamp TJ
    J Mol Cell Cardiol; 2012 Feb; 52(2):376-87. PubMed ID: 21888911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards computational modeling of excitation-contraction coupling in cardiac myocytes: reconstruction of structures and proteins from confocal imaging.
    Sachse FB; Savio-Galimberti E; Goldhaber JI; Bridge JH
    Pac Symp Biocomput; 2009; ():328-39. PubMed ID: 19209712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiomyocyte calcineurin signaling in subcellular domains: from the sarcolemma to the nucleus and beyond.
    Heineke J; Ritter O
    J Mol Cell Cardiol; 2012 Jan; 52(1):62-73. PubMed ID: 22064325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac sodium transport and excitation-contraction coupling.
    Aronsen JM; Swift F; Sejersted OM
    J Mol Cell Cardiol; 2013 Aug; 61():11-9. PubMed ID: 23774049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging intracellular scales by mechanistic computational models.
    Widmer LA; Stelling J
    Curr Opin Biotechnol; 2018 Aug; 52():17-24. PubMed ID: 29486391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Criticality in intracellular calcium signaling in cardiac myocytes.
    Nivala M; Ko CY; Nivala M; Weiss JN; Qu Z
    Biophys J; 2012 Jun; 102(11):2433-42. PubMed ID: 22713558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes.
    Awasthi S; Izu LT; Mao Z; Jian Z; Landas T; Lerner A; Shimkunas R; Woldeyesus R; Bossuyt J; Wood BM; Chen YJ; Matthews DL; Lieu DK; Chiamvimonvat N; Lam KS; Chen-Izu Y; Chan JW
    Circ Res; 2016 Jan; 118(2):e19-28. PubMed ID: 26643875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging calcium sparks in cardiac myocytes.
    Guatimosim S; Guatimosim C; Song LS
    Methods Mol Biol; 2011; 689():205-14. PubMed ID: 21153794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization and Manipulation of Intracellular Signaling.
    Goto Y; Kondo Y; Aoki K
    Adv Exp Med Biol; 2021; 1293():225-234. PubMed ID: 33398816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Computational Modeling of Cardiomyocyte Calcium Handling and Cardiac Arrhythmias: Current Status and Future Challenges.
    Sutanto H; Heijman J
    Cells; 2022 Mar; 11(7):. PubMed ID: 35406654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel acceleration for modeling of calcium dynamics in cardiac myocytes.
    Liu K; Yao G; Yu Z
    Biomed Mater Eng; 2014; 24(1):1417-24. PubMed ID: 24212039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional imaging of fast intracellular Ca2+ release.
    Tian Q; Kaestner L; Lipp P
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1324-7. PubMed ID: 25447280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative modeling of the cardiac ventricular myocyte.
    Winslow RL; Cortassa S; O'Rourke B; Hashambhoy YL; Rice JJ; Greenstein JL
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(4):392-413. PubMed ID: 20865780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoplasmic cAMP concentrations in intact cardiac myocytes.
    Iancu RV; Ramamurthy G; Warrier S; Nikolaev VO; Lohse MJ; Jones SW; Harvey RD
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C414-22. PubMed ID: 18550706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes.
    Kockskämper J; Zima AV; Roderick HL; Pieske B; Blatter LA; Bootman MD
    J Mol Cell Cardiol; 2008 Aug; 45(2):128-47. PubMed ID: 18603259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling.
    Koivumäki JT; Korhonen T; Takalo J; Weckström M; Tavi P
    BMC Physiol; 2009 Aug; 9():16. PubMed ID: 19715618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2.1 GHz electromagnetic field does not change contractility and intracellular Ca2+ transients but decreases β-adrenergic responsiveness through nitric oxide signaling in rat ventricular myocytes.
    Olgar Y; Hidisoglu E; Celen MC; Yamasan BE; Yargicoglu P; Ozdemir S
    Int J Radiat Biol; 2015; 91(10):851-7. PubMed ID: 26136087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.