These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24509417)

  • 1. Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications.
    Larrañaga A; Guay-Bégin AA; Chevallier P; Sabbatier G; Fernández J; Laroche G; Sarasua JR
    Biomatter; 2014; 4():e27979. PubMed ID: 24509417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field.
    Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR
    J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.
    Lipik VT; Kong JF; Chattopadhyay S; Widjaja LK; Liow SS; Venkatraman SS; Abadie MJ
    Acta Biomater; 2010 Nov; 6(11):4261-70. PubMed ID: 20566308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility.
    Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M
    J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior.
    Rohman G; Huot S; Vilas-Boas M; Radu-Bostan G; Castner DG; Migonney V
    J Mater Sci Mater Med; 2015 Jul; 26(7):206. PubMed ID: 26155977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New semi-biodegradable materials from semi-interpenetrated networks of poly(ϵ-caprolactone) and poly(ethyl acrylate).
    Lozano Picazo P; Pérez Garnes M; Martínez Ramos C; Vallés-Lluch A; Monleón Pradas M
    Macromol Biosci; 2015 Feb; 15(2):229-40. PubMed ID: 25266822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and quantitative analyses of acrylamide-grafted poly(lactide-co-glycidyl methacrylate) amphiphilic copolymers for environmental and biomedical applications.
    Rahman M; Thananukul K; Supmak W; Petchsuk A; Opaprakasit P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117447. PubMed ID: 31454688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique.
    Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair.
    Sun M; Downes S
    J Mater Sci Mater Med; 2009 May; 20(5):1181-92. PubMed ID: 19132511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation of elastic properties during hydrolytic degradation of lactide and ε-caprolactone polymers.
    Morokov ES; Demina VA; Sedush NG; Kalinin KT; Khramtsova EA; Dmitryakov PV; Bakirov AV; Grigoriev TE; Levin VM; Chvalun SN
    Acta Biomater; 2020 Jun; 109():61-72. PubMed ID: 32294555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mild method for surface-grafting MPC onto poly(ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency.
    Liu X; Yang B; Hou Z; Zhang N; Gao Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109952. PubMed ID: 31499985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers.
    Cohn D; Stern T; González MF; Epstein J
    J Biomed Mater Res; 2002 Feb; 59(2):273-81. PubMed ID: 11745563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering.
    Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V
    Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.
    Oyama HT; Tanishima D; Ogawa R
    Biomacromolecules; 2017 Apr; 18(4):1281-1292. PubMed ID: 28277656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honeycomb-structured films by multifunctional amphiphilic biodegradable copolymers: surface morphology control and biomedical application as scaffolds for cell growth.
    Zhu Y; Sheng R; Luo T; Li H; Sun J; Chen S; Sun W; Cao A
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2487-95. PubMed ID: 21699231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.
    Varaprasad K; Pariguana M; Raghavendra GM; Jayaramudu T; Sadiku ER
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):85-93. PubMed ID: 27770963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent grafting of poly(L-lactide) to tune the in vitro degradation rate.
    Källrot M; Edlund U; Albertsson AC
    Biomacromolecules; 2007 Aug; 8(8):2492-6. PubMed ID: 17630795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic degradation of composites of poly(L-lactide-co-epsilon-caprolactone) 70/30 and β-tricalcium phosphate.
    Ahola N; Veiranto M; Rich J; Efimov A; Hannula M; Seppälä J; Kellomäki M
    J Biomater Appl; 2013 Nov; 28(4):529-43. PubMed ID: 23048066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.