BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 24509441)

  • 21. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands.
    Petronilho EC; Pedrote MM; Marques MA; Passos YM; Mota MF; Jakobus B; de Sousa GDS; Pereira da Costa F; Felix AL; Ferretti GDS; Almeida FP; Cordeiro Y; Vieira TCRG; de Oliveira GAP; Silva JL
    Chem Sci; 2021 Apr; 12(21):7334-7349. PubMed ID: 34163823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amyloidogenicity of p53: a hidden link between protein misfolding and cancer.
    Gong H; Yang X; Zhao Y; Petersen RB; Liu X; Liu Y; Huang K
    Curr Protein Pept Sci; 2015; 16(2):135-46. PubMed ID: 25692950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting the aggregation propensity of prion sequences.
    Espargaró A; Busquets MA; Estelrich J; Sabate R
    Virus Res; 2015 Sep; 207():127-35. PubMed ID: 25747492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Prion protein structure and its relationships with pathogenesis].
    Muramoto T
    Rinsho Shinkeigaku; 2003 Nov; 43(11):813-6. PubMed ID: 15152472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form.
    Vanik DL; Surewicz WK
    J Biol Chem; 2002 Dec; 277(50):49065-70. PubMed ID: 12372829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resveratrol prevents p53 aggregation
    Ferraz da Costa DC; Campos NPC; Santos RA; Guedes-da-Silva FH; Martins-Dinis MMDC; Zanphorlin L; Ramos C; Rangel LP; Silva JL
    Oncotarget; 2018 Jun; 9(49):29112-29122. PubMed ID: 30018739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The roles of the conserved tyrosine in the β2-α2 loop of the prion protein.
    Huang D; Caflisch A
    Prion; 2015; 9(6):412-9. PubMed ID: 26689486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutant p53 gain of oncogenic function: in vivo evidence, mechanism of action and its clinical implications.
    Adhikari AS; Iwakuma T
    Fukuoka Igaku Zasshi; 2009 Jun; 100(6):217-28. PubMed ID: 19670804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective processing and metabolism of disease-causing mutant prion proteins.
    Ashok A; Hegde RS
    PLoS Pathog; 2009 Jun; 5(6):e1000479. PubMed ID: 19543376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors.
    Levy CB; Stumbo AC; Ano Bom AP; Portari EA; Cordeiro Y; Silva JL; De Moura-Gallo CV
    Int J Biochem Cell Biol; 2011 Jan; 43(1):60-4. PubMed ID: 21056685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and characterization of a spontaneously aggregating amyloid-forming variant of human PrP((90-231)) through phage-display screening of variants randomized between residues 101 and 112.
    Verma A; Sharma S; Ganguly NK; Majumdar S; Guptasarma P; Luthra-Guptasarma M
    Int J Biochem Cell Biol; 2008; 40(4):663-76. PubMed ID: 18023239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions.
    Li Q; Wang F; Xiao X; Kim C; Bohon J; Kiselar J; Safar JG; Ma J; Surewicz WK
    J Biol Chem; 2018 Nov; 293(48):18494-18503. PubMed ID: 30275016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity.
    Lasagna-Reeves CA; Clos AL; Castillo-Carranza D; Sengupta U; Guerrero-Muñoz M; Kelly B; Wagner R; Kayed R
    Biochem Biophys Res Commun; 2013 Jan; 430(3):963-8. PubMed ID: 23261448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Status of p53 Oligomeric and Aggregation States in Cancer.
    de Oliveira GAP; Petronilho EC; Pedrote MM; Marques MA; Vieira TCRG; Cino EA; Silva JL
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32260447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prion protein/protein interactions: fusion with yeast Sup35p-NM modulates cytosolic PrP aggregation in mammalian cells.
    Krammer C; Suhre MH; Kremmer E; Diemer C; Hess S; Schätzl HM; Scheibel T; Vorberg I
    FASEB J; 2008 Mar; 22(3):762-73. PubMed ID: 17928365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Replication of Prion Protein Fragment 89-230 Amyloid Fibrils Accelerated by Prion Protein Fragment 107-143 Aggregates.
    Sneideris T; Ziaunys M; Chu BK; Chen RP; Smirnovas V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33049945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein.
    Pan K; Yi CW; Chen J; Liang Y
    Biochim Biophys Acta; 2015 Aug; 1854(8):907-18. PubMed ID: 25922234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli.
    Lamour G; Yip CK; Li H; Gsponer J
    ACS Nano; 2014 Apr; 8(4):3851-61. PubMed ID: 24588725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils.
    Singh J; Sabareesan AT; Mathew MK; Udgaonkar JB
    J Mol Biol; 2012 Oct; 423(2):217-31. PubMed ID: 22789566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1.
    Paul KR; Molliex A; Cascarina S; Boncella AE; Taylor JP; Ross ED
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28137911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.