BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24509507)

  • 1. Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals.
    Bini RR; Hume PA
    Int J Sports Physiol Perform; 2014 Sep; 9(5):876-81. PubMed ID: 24509507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial.
    Carpes FP; Rossato M; Faria IE; Bolli Mota C
    J Sports Med Phys Fitness; 2007 Mar; 47(1):51-7. PubMed ID: 17369798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a novel pedal design on maximal power output and mechanical efficiency in well-trained cyclists.
    Koninckx E; van Leemputte M; Hespel P
    J Sports Sci; 2008 Aug; 26(10):1015-23. PubMed ID: 18608832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.
    Sanderson DJ
    J Sports Sci; 1991; 9(2):191-203. PubMed ID: 1895355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity and reliability of the look Keo power pedal system for measuring power output during incremental and repeated sprint cycling.
    Sparks SA; Dove B; Bridge CA; Midgely AW; McNaughton LR
    Int J Sports Physiol Perform; 2015 Jan; 10(1):39-45. PubMed ID: 24896154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different aerodynamic time trial cycling positions on muscle activation and crank torque.
    Fintelman DM; Sterling M; Hemida H; Li FX
    Scand J Med Sci Sports; 2016 May; 26(5):528-34. PubMed ID: 25996563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of cycling cadence on the phases of joint power, crank power, force and force effectiveness.
    Ettema G; Lorås H; Leirdal S
    J Electromyogr Kinesiol; 2009 Apr; 19(2):e94-101. PubMed ID: 18178104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.
    Koninckx E; Van Leemputte M; Hespel P
    Eur J Appl Physiol; 2010 Jul; 109(4):699-708. PubMed ID: 20213468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling.
    Hansen EA; Jensen K; Hallén J; Rasmussen J; Pedersen PK
    J Physiol Anthropol; 2009 Nov; 28(6):261-7. PubMed ID: 20009373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical efficiency of cycling with a new developed pedal-crank.
    Zamparo P; Minetti A; di Prampero P
    J Biomech; 2002 Oct; 35(10):1387-98. PubMed ID: 12231284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torque, power and muscle activation of eccentric and concentric isokinetic cycling.
    Green DJ; Thomas K; Ross EZ; Green SC; Pringle JSM; Howatson G
    J Electromyogr Kinesiol; 2018 Jun; 40():56-63. PubMed ID: 29631117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional data analysis reveals asymmetrical crank torque during cycling performed at different exercise intensities.
    da Silva Soares J; Carpes FP; de Fátima Geraldo G; Bertú Medeiros F; Roberto Kunzler M; Sosa Machado Á; Augusto Paolucci L; Gustavo Pereira de Andrade A
    J Biomech; 2021 Jun; 122():110478. PubMed ID: 33964576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between pedal force asymmetry and performance in cycling time trial.
    Bini RR; Hume PA
    J Sports Med Phys Fitness; 2015 Sep; 55(9):892-8. PubMed ID: 26470634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed.
    Martin JC; Spirduso WW
    Eur J Appl Physiol; 2001 May; 84(5):413-8. PubMed ID: 11417428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The association between negative muscle work and pedaling rate.
    Neptune RR; Herzog W
    J Biomech; 1999 Oct; 32(10):1021-6. PubMed ID: 10476840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why does power output decrease at high pedaling rates during sprint cycling?
    Samozino P; Horvais N; Hintzy F
    Med Sci Sports Exerc; 2007 Apr; 39(4):680-7. PubMed ID: 17414806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the rotor pedalling system on the performance of trained cyclists during incremental and constant-load cycle-ergometer tests.
    Lucía A; Balmer J; Davison RC; Pérez M; Santalla A; Smith PM
    Int J Sports Med; 2004 Oct; 25(7):479-85. PubMed ID: 15459827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclists' improvement of pedaling efficacy and performance after heavy strength training.
    Hansen EA; Rønnestad BR; Vegge G; Raastad T
    Int J Sports Physiol Perform; 2012 Dec; 7(4):313-21. PubMed ID: 23197584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crank inertial load has little effect on steady-state pedaling coordination.
    Fregly BJ; Zajac FE; Dairaghi CA
    J Biomech; 1996 Dec; 29(12):1559-67. PubMed ID: 8945654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.