These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24509941)
1. Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Gao Z; Hou L; Xu M; Tang D Sci Rep; 2014 Feb; 4():3966. PubMed ID: 24509941 [TBL] [Abstract][Full Text] [Related]
2. A non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers. Li J; Gao Z; Ye H; Wan S; Pierce M; Tang D; Xia X Chem Commun (Camb); 2017 Aug; 53(65):9055-9058. PubMed ID: 28707690 [TBL] [Abstract][Full Text] [Related]
3. Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Lai W; Tang D; Zhuang J; Chen G; Yang H Anal Chem; 2014 May; 86(10):5061-8. PubMed ID: 24785462 [TBL] [Abstract][Full Text] [Related]
4. Colorimetric Immunoassays with Boronic Acid-Decorated, Peroxidase-like Metal-Organic Frameworks as the Carriers of Antibodies and Enzymes. Sun T; Yi X; Liu L; Zhao F Molecules; 2024 Jun; 29(13):. PubMed ID: 38998952 [TBL] [Abstract][Full Text] [Related]
5. Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Gao Z; Xu M; Hou L; Chen G; Tang D Anal Chem; 2013 Jul; 85(14):6945-52. PubMed ID: 23806145 [TBL] [Abstract][Full Text] [Related]
6. Enzyme-controlled dissolution of MnO Lai W; Wei Q; Xu M; Zhuang J; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):645-651. PubMed ID: 26725933 [TBL] [Abstract][Full Text] [Related]
7. High-index {hk0} faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Gao Z; Lv S; Xu M; Tang D Analyst; 2017 Mar; 142(6):911-917. PubMed ID: 28225095 [TBL] [Abstract][Full Text] [Related]
8. A colorimetric method for determination of the prostate specific antigen based on enzyme-free cascaded signal amplification via peptide-copper(II) nanoparticles. Sun T; Xia N; Yuan F; Liu X; Chang Y; Liu S; Liu L Mikrochim Acta; 2020 Jan; 187(2):116. PubMed ID: 31925569 [TBL] [Abstract][Full Text] [Related]
9. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B Lai W; Zeng Q; Tang J; Zhang M; Tang D Mikrochim Acta; 2018 Jan; 185(2):92. PubMed ID: 29594447 [TBL] [Abstract][Full Text] [Related]
10. Exploration of Nanoparticle-Mediated Photothermal Effect of TMB-H Fu G; Sanjay ST; Zhou W; Brekken RA; Kirken RA; Li X Anal Chem; 2018 May; 90(9):5930-5937. PubMed ID: 29641893 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric switchable linker-based bioassay for ultrasensitive detection of prostate-specific antigen as a cancer biomarker. Hahn J; Kim E; You Y; Choi YJ Analyst; 2019 Jul; 144(14):4439-4446. PubMed ID: 31218301 [TBL] [Abstract][Full Text] [Related]
12. Smartphone-Based Free-to-Total Prostate Specific Antigen Ratio Detection System Using a Colorimetric Reaction Integrated with Proximity-Induced Bio-Barcode and CRISPR/Cas12a Assay. Luo B; Zhou J; Zhan X; Ying B; Lan F; Wu Y Small; 2024 Jul; 20(28):e2310212. PubMed ID: 38342699 [TBL] [Abstract][Full Text] [Related]
13. Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Gao Z; Xu M; Lu M; Chen G; Tang D Biosens Bioelectron; 2015 Aug; 70():194-201. PubMed ID: 25814409 [TBL] [Abstract][Full Text] [Related]
14. An ultrasensitive immunoassay for prostate-specific antigen based on conventional colorimetric detection. Khosravi MJ; Papanastasiou-Diamandi A; Mistry J Clin Biochem; 1995 Aug; 28(4):407-14. PubMed ID: 8521595 [TBL] [Abstract][Full Text] [Related]
15. A papain-based colorimetric catalytic sensing system for immunoassay detection of carcinoembryonic antigen. Li X; Lu X; Zhang L; Cai Z; Tang D; Lai W Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124269. PubMed ID: 38608561 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO Wang J; Ni P; Chen C; Jiang Y; Zhang C; Wang B; Cao B; Lu Y Mikrochim Acta; 2020 Jan; 187(2):115. PubMed ID: 31919598 [TBL] [Abstract][Full Text] [Related]
17. Polyion oligonucleotide-decorated gold nanoparticles with tunable surface charge density for amplified signal output of potentiometric immunosensor. Lv S; Lin Z; Zhang K; Lu M; Tang D Anal Chim Acta; 2017 Apr; 964():67-73. PubMed ID: 28351640 [TBL] [Abstract][Full Text] [Related]
18. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Kavosi B; Salimi A; Hallaj R; Moradi F Biosens Bioelectron; 2015 Dec; 74():915-23. PubMed ID: 26257183 [TBL] [Abstract][Full Text] [Related]
19. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. Ye H; Yang K; Tao J; Liu Y; Zhang Q; Habibi S; Nie Z; Xia X ACS Nano; 2017 Feb; 11(2):2052-2059. PubMed ID: 28135070 [TBL] [Abstract][Full Text] [Related]
20. Cascade amplified colorimetric immunoassay based on an integrated multifunctional composite with catalytic coordination polymers for prostate specific antigen detection. Wu S; Wang C; Wang J; Tan H J Mater Chem B; 2020 Dec; 8(46):10662-10669. PubMed ID: 33151226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]