These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 24510079)
21. Diagnostic capabilities of frequency-doubling technology, scanning laser polarimetry, and nerve fiber layer photographs to distinguish glaucomatous damage. Paczka JA; Friedman DS; Quigley HA; Barron Y; Vitale S Am J Ophthalmol; 2001 Feb; 131(2):188-97. PubMed ID: 11228294 [TBL] [Abstract][Full Text] [Related]
22. Optic disk and nerve fiber layer imaging to detect glaucoma. Badalà F; Nouri-Mahdavi K; Raoof DA; Leeprechanon N; Law SK; Caprioli J Am J Ophthalmol; 2007 Nov; 144(5):724-32. PubMed ID: 17868631 [TBL] [Abstract][Full Text] [Related]
23. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. Leung CK; Ye C; Weinreb RN; Cheung CY; Qiu Q; Liu S; Xu G; Lam DS Ophthalmology; 2010 Feb; 117(2):267-74. PubMed ID: 19969364 [TBL] [Abstract][Full Text] [Related]
24. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Bayer AU; Erb C Ophthalmology; 2002 May; 109(5):1009-17. PubMed ID: 11986111 [TBL] [Abstract][Full Text] [Related]
25. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Medeiros FA; Zangwill LM; Bowd C; Weinreb RN Arch Ophthalmol; 2004 Jun; 122(6):827-37. PubMed ID: 15197057 [TBL] [Abstract][Full Text] [Related]
26. Correlations Between the Individual Risk for Glaucoma and RNFL and Optic Disc Morphometrical Evaluations in Ocular Hypertensive Patients. Colombo L; Bertuzzi F; Rulli E; Miglior S J Glaucoma; 2016 May; 25(5):e455-62. PubMed ID: 26091177 [TBL] [Abstract][Full Text] [Related]
27. 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings. Nucci C; Mancino R; Martucci A; Bolacchi F; Manenti G; Cedrone C; Culasso F; Floris R; Cerulli L; Garaci FG Br J Ophthalmol; 2012 Jul; 96(7):976-80. PubMed ID: 22628535 [TBL] [Abstract][Full Text] [Related]
28. Diagnostic accuracy of the Moorfields Regression Analysis using the Heidelberg Retina Tomograph in glaucoma patients with visual field defects. Medved N; Cvenkel B Eur J Ophthalmol; 2007; 17(2):216-22. PubMed ID: 17415695 [TBL] [Abstract][Full Text] [Related]
30. Influence of disease severity and optic disc size on the diagnostic performance of imaging instruments in glaucoma. Medeiros FA; Zangwill LM; Bowd C; Sample PA; Weinreb RN Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1008-15. PubMed ID: 16505035 [TBL] [Abstract][Full Text] [Related]
31. Visual function-specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. Tafreshi A; Sample PA; Liebmann JM; Girkin CA; Zangwill LM; Weinreb RN; Lalezary M; Racette L Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1234-40. PubMed ID: 18978349 [TBL] [Abstract][Full Text] [Related]
32. Sector-based analysis of frequency doubling technology sensitivity and optic nerve head shape parameters. Iester M; Sangermani C; De Feo F; Ungaro N; Cicinelli S; Tardini MG; Calabria G; Gandolfi S Eur J Ophthalmol; 2007; 17(2):223-9. PubMed ID: 17415696 [TBL] [Abstract][Full Text] [Related]
33. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Liu S; Lam S; Weinreb RN; Ye C; Cheung CY; Lai G; Lam DS; Leung CK Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7325-31. PubMed ID: 21810975 [TBL] [Abstract][Full Text] [Related]
34. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: changes during a 12-month follow-up in preperimetric glaucoma. A pilot study. Holló G; Szabó A; Vargha P Acta Ophthalmol Scand; 2001 Aug; 79(4):403-7. PubMed ID: 11453863 [TBL] [Abstract][Full Text] [Related]
35. Oculus-Spark perimetry compared with 3 procedures of glaucoma morphologic analysis (GDx, HRT, and OCT). Gonzalez de la Rosa M; Gonzalez-Hernandez M; Sanchez-Garcia M; Rodriguez de la Vega R; Diaz-Aleman T; Pareja Rios A Eur J Ophthalmol; 2013; 23(3):316-23. PubMed ID: 23397160 [TBL] [Abstract][Full Text] [Related]
36. Predictive value of frequency doubling technology perimetry for detecting glaucoma in a developing country. Mansberger SL; Johnson CA; Cioffi GA; Choi D; Krishnadas SR; Srinivasan M; Balamurugan V; Kim U; Smith SD; Wilkins JH; Gritz DC J Glaucoma; 2005 Apr; 14(2):128-34. PubMed ID: 15741814 [TBL] [Abstract][Full Text] [Related]
37. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Miglior S; Guareschi M; Albe' E; Gomarasca S; Vavassori M; Orzalesi N Am J Ophthalmol; 2003 Jul; 136(1):26-33. PubMed ID: 12834666 [TBL] [Abstract][Full Text] [Related]
38. Achromatic and short-wavelength automated perimetry in patients with glaucomatous large cups. Mansberger SL; Sample PA; Zangwill L; Weinreb RN Arch Ophthalmol; 1999 Nov; 117(11):1473-7. PubMed ID: 10565515 [TBL] [Abstract][Full Text] [Related]
39. Assessment of a race-specific normative HRT-III database to differentiate glaucomatous from normal eyes. Zelefsky JR; Harizman N; Mora R; Ilitchev E; Tello C; Ritch R; Liebmann JM J Glaucoma; 2006 Dec; 15(6):548-51. PubMed ID: 17106370 [TBL] [Abstract][Full Text] [Related]
40. Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes. Miglior S; Casula M; Guareschi M; Marchetti I; Iester M; Orzalesi N Ophthalmology; 2001 Sep; 108(9):1621-7. PubMed ID: 11535460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]