These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Gloor GB; Martin LC; Wahl LM; Dunn SD Biochemistry; 2005 May; 44(19):7156-65. PubMed ID: 15882054 [TBL] [Abstract][Full Text] [Related]
3. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Dunn SD; Wahl LM; Gloor GB Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019 [TBL] [Abstract][Full Text] [Related]
4. Accurate simulation and detection of coevolution signals in multiple sequence alignments. Ackerman SH; Tillier ER; Gatti DL PLoS One; 2012; 7(10):e47108. PubMed ID: 23091608 [TBL] [Abstract][Full Text] [Related]
6. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades. Gloor GB; Tyagi G; Abrassart DM; Kingston AJ; Fernandes AD; Dunn SD; Brandl CJ Mol Biol Evol; 2010 May; 27(5):1181-91. PubMed ID: 20065119 [TBL] [Abstract][Full Text] [Related]
7. Using evolutionary information to find specificity-determining and co-evolving residues. Kolesov G; Mirny LA Methods Mol Biol; 2009; 541():421-48. PubMed ID: 19381538 [TBL] [Abstract][Full Text] [Related]
8. Contributions of residue pairing to beta-sheet formation: conservation and covariation of amino acid residue pairs on antiparallel beta-strands. Mandel-Gutfreund Y; Zaremba SM; Gregoret LM J Mol Biol; 2001 Feb; 305(5):1145-59. PubMed ID: 11162120 [TBL] [Abstract][Full Text] [Related]
9. Regional covariation and its application for predicting protein contact patches. Xu Y; Tillier ER Proteins; 2010 Feb; 78(3):548-58. PubMed ID: 19768681 [TBL] [Abstract][Full Text] [Related]
10. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions. Larson SM; Di Nardo AA; Davidson AR J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119 [TBL] [Abstract][Full Text] [Related]
11. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
12. Reliable and robust detection of coevolving protein residues. Jeong CS; Kim D Protein Eng Des Sel; 2012 Nov; 25(11):705-13. PubMed ID: 23077274 [TBL] [Abstract][Full Text] [Related]
13. Using information theory to search for co-evolving residues in proteins. Martin LC; Gloor GB; Dunn SD; Wahl LM Bioinformatics; 2005 Nov; 21(22):4116-24. PubMed ID: 16159918 [TBL] [Abstract][Full Text] [Related]
14. CoeViz: a web-based tool for coevolution analysis of protein residues. Baker FN; Porollo A BMC Bioinformatics; 2016 Mar; 17():119. PubMed ID: 26956673 [TBL] [Abstract][Full Text] [Related]
15. A new ensemble coevolution system for detecting HIV-1 protein coevolution. Li G; Theys K; Verheyen J; Pineda-Peña AC; Khouri R; Piampongsant S; Eusébio M; Ramon J; Vandamme AM Biol Direct; 2015 Jan; 10():1. PubMed ID: 25564011 [TBL] [Abstract][Full Text] [Related]
16. Predicting protein domain interactions from coevolution of conserved regions. Kann MG; Jothi R; Cherukuri PF; Przytycka TM Proteins; 2007 Jun; 67(4):811-20. PubMed ID: 17357158 [TBL] [Abstract][Full Text] [Related]