These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24510448)

  • 21. Development and validation of abiotic ligand model for nickel toxicity to wheat (Triticum aestivum).
    Jiang Y; Gu X; Zhu B; Gu C
    J Environ Sci (China); 2017 Dec; 62():22-30. PubMed ID: 29289288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.
    Lyu J; Park J; Kumar Pandey L; Choi S; Lee H; De Saeger J; Depuydt S; Han T
    Ecotoxicol Environ Saf; 2018 Mar; 149():225-232. PubMed ID: 29182968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The acute toxicity of nickel to Daphnia magna: predictive capacity of bioavailability models in artificial and natural waters.
    Deleebeeck NM; De Schamphelaere KA; Heijerick DG; Bossuyt BT; Janssen CR
    Ecotoxicol Environ Saf; 2008 May; 70(1):67-78. PubMed ID: 17624431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH.
    Wang X; Hua L; Ma Y
    Chemosphere; 2012 Sep; 89(1):89-95. PubMed ID: 22572167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity and fate of cadmium in hydroponically cultivated lettuce (Lactuca sativa L.) influenced by microplastics.
    Yu J; Chen J; Li Q; Ren P; Tang Y; Huang R; Lu Y; Chen K
    Ecotoxicol Environ Saf; 2024 Jun; 278():116422. PubMed ID: 38705040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the terrestrial biotic ligand model for predicting nickel toxicity to barley (Hordeum vulgare): ion effects at low pH.
    Antunes PM; Kreager NJ
    Environ Toxicol Chem; 2009 Aug; 28(8):1704-10. PubMed ID: 19374472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The response and tolerance mechanisms of lettuce (Lactuca sativa L.) exposed to nickel in a spiked soil system.
    Zhao J; Lu C; Tariq M; Xiao Q; Zhang W; Huang K; Lu Q; Lin K; Liu Z
    Chemosphere; 2019 May; 222():399-406. PubMed ID: 30711729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal toxicity variation in light-textured soil amended with urban sewage sludge: interaction effect on cadmium, nickel, and phytotoxicity.
    Zoghlami RI; Hamdi H; Boudabbous K; Hechmi S; Khelil MN; Jedidi N
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3608-3615. PubMed ID: 29164461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu²⁺-Zn²⁺ and Cu²⁺-Ag⁺).
    Le TT; Vijver MG; Kinraide TB; Peijnenburg WJ; Hendriks AJ
    Environ Pollut; 2013 May; 176():185-92. PubMed ID: 23429096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Different sensitivity of 23 common crop species to cadmium toxicity].
    Ding FH; Liu SX; Luo D; Wang G
    Huan Jing Ke Xue; 2011 Jan; 32(1):277-83. PubMed ID: 21404699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.
    Christiansen KS; Borggaard OK; Holm PE; Vijver MG; Hauschild MZ; Peijnenburg WJ
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5283-92. PubMed ID: 25395323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a biotic ligand model for acute zinc toxicity to barley root elongation.
    Wang X; Li B; Ma Y; Hua L
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1272-8. PubMed ID: 20570355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.
    Lamb DT; Ming H; Megharaj M; Naidu R
    Arch Environ Contam Toxicol; 2010 Oct; 59(3):424-32. PubMed ID: 20213195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of the nickel biotic ligand model for locally relevant species in Australian freshwaters.
    Peters A; Merrington G; Schlekat C; De Schamphelaere K; Stauber J; Batley G; Harford A; van Dam R; Pease C; Mooney T; Warne M; Hickey C; Glazebrook P; Chapman J; Smith R; Krassoi R
    Environ Toxicol Chem; 2018 Oct; 37(10):2566-2574. PubMed ID: 29923627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models.
    Chen BC; Ho PC; Juang KW
    Ecotoxicology; 2013 Jan; 22(1):174-83. PubMed ID: 23138334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A generic biotic ligand model quantifying the development in time of Ni toxicity to Enchytraeus crypticus.
    He E; Qiu H; Dimitrova K; Van Gestel CA
    Chemosphere; 2015 Apr; 124():170-6. PubMed ID: 25559177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing?
    Versieren L; Evers S; De Schamphelaere K; Blust R; Smolders E
    Environ Toxicol Chem; 2016 Oct; 35(10):2483-2492. PubMed ID: 26800646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An improved biotic ligand model (BLM) for predicting Co(II)-toxicity to wheat root elongation: The influences of toxic metal speciation and accompanying ions.
    Wang X; Song N
    Ecotoxicol Environ Saf; 2019 Oct; 182():109433. PubMed ID: 31319244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The prediction of combined toxicity of Cu-Ni for barley using an extended concentration addition model.
    Wang X; Meng X; Ma Y; Pu X; Zhong X
    Environ Pollut; 2018 Nov; 242(Pt A):136-142. PubMed ID: 29966837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.