These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24510721)

  • 1. Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay.
    Liu Q; Wang F; Axtell MJ
    Plant Cell; 2014 Feb; 26(2):741-53. PubMed ID: 24510721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional dissection of a plant Argonaute.
    Fátyol K; Ludman M; Burgyán J
    Nucleic Acids Res; 2016 Feb; 44(3):1384-97. PubMed ID: 26673719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.
    Jagtap S; Shivaprasad PV
    BMC Genomics; 2014 Dec; 15(1):1049. PubMed ID: 25443390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A family of microRNAs present in plants and animals.
    Arteaga-Vázquez M; Caballero-Pérez J; Vielle-Calzada JP
    Plant Cell; 2006 Dec; 18(12):3355-69. PubMed ID: 17189346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular insights into microRNA-mediated translational repression in plants.
    Iwakawa HO; Tomari Y
    Mol Cell; 2013 Nov; 52(4):591-601. PubMed ID: 24267452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific effects of microRNAs on the plant transcriptome.
    Schwab R; Palatnik JF; Riester M; Schommer C; Schmid M; Weigel D
    Dev Cell; 2005 Apr; 8(4):517-27. PubMed ID: 15809034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis.
    Baksa I; Nagy T; Barta E; Havelda Z; Várallyay É; Silhavy D; Burgyán J; Szittya G
    BMC Genomics; 2015 Dec; 16():1025. PubMed ID: 26626050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular architecture of a miRNA-regulated 3' UTR.
    Didiano D; Hobert O
    RNA; 2008 Jul; 14(7):1297-317. PubMed ID: 18463285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of artificial MiRNA mimics with centered-site complementarity for gene targeting.
    Zhang SG; Liu CY; Li L; Sun TW; Luo YG; Yun WJ; Zhang JY
    PLoS One; 2013; 8(8):e72062. PubMed ID: 24013456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementarity to an miRNA seed region is sufficient to induce moderate repression of a target transcript in the unicellular green alga Chlamydomonas reinhardtii.
    Yamasaki T; Voshall A; Kim EJ; Moriyama E; Cerutti H; Ohama T
    Plant J; 2013 Dec; 76(6):1045-56. PubMed ID: 24127635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA decoys: an emerging component of plant regulatory networks?
    Banks IR; Zhang Y; Wiggins BE; Heck GR; Ivashuta S
    Plant Signal Behav; 2012 Sep; 7(9):1188-93. PubMed ID: 22899065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional conservation of both CDS- and 3'-UTR-located microRNA binding sites between species.
    Liu G; Zhang R; Xu J; Wu CI; Lu X
    Mol Biol Evol; 2015 Mar; 32(3):623-8. PubMed ID: 25414126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of microRNA-target recognition.
    Brennecke J; Stark A; Russell RB; Cohen SM
    PLoS Biol; 2005 Mar; 3(3):e85. PubMed ID: 15723116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A useful method of identifying of miRNAs which can down-regulate Zeb-2.
    Oba S; Mizutani T; Suzuki E; Nishimatsu H; Takahashi M; Ogawa Y; Kimura K; Hirata Y; Fujita T
    BMC Res Notes; 2013 Nov; 6():470. PubMed ID: 24245745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome-wide prediction of miRNA targets in human and mouse using FASTH.
    Ragan C; Cloonan N; Grimmond SM; Zuker M; Ragan MA
    PLoS One; 2009 May; 4(5):e5745. PubMed ID: 19478946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.
    Lewis BP; Burge CB; Bartel DP
    Cell; 2005 Jan; 120(1):15-20. PubMed ID: 15652477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmentally regulated expression and complex processing of barley pri-microRNAs.
    Kruszka K; Pacak A; Swida-Barteczka A; Stefaniak AK; Kaja E; Sierocka I; Karlowski W; Jarmolowski A; Szweykowska-Kulinska Z
    BMC Genomics; 2013 Jan; 14():34. PubMed ID: 23324356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-complementary sequence context in mature miRNAs.
    Maiti M; Nauwelaerts K; Lescrinier E; Schuit FC; Herdewijn P
    Biochem Biophys Res Commun; 2010 Feb; 392(4):572-6. PubMed ID: 20097176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeologs of the Nicotiana benthamiana Antiviral ARGONAUTE1 Show Different Susceptibilities to microRNA168-Mediated Control.
    Gursinsky T; Pirovano W; Gambino G; Friedrich S; Behrens SE; Pantaleo V
    Plant Physiol; 2015 Jul; 168(3):938-52. PubMed ID: 26015446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.