These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24510778)

  • 21. Multicolor 3D Confocal Imaging of Thick Tissue Sections.
    Kunz L; Coutu DL
    Methods Mol Biol; 2021; 2350():95-104. PubMed ID: 34331281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiphoton excitation of autofluorescence for microscopy of glioma tissue.
    Leppert J; Krajewski J; Kantelhardt SR; Schlaffer S; Petkus N; Reusche E; Hüttmann G; Giese A
    Neurosurgery; 2006 Apr; 58(4):759-67; discussion 759-67. PubMed ID: 16575340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clarity and Immunofluorescence on Mouse Brain Tissue.
    Yu T; Zhu D
    Curr Protoc Neurosci; 2018 Apr; 83(1):e46. PubMed ID: 30040215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A rapid optical clearing protocol using 2,2'-thiodiethanol for microscopic observation of fixed mouse brain.
    Aoyagi Y; Kawakami R; Osanai H; Hibi T; Nemoto T
    PLoS One; 2015; 10(1):e0116280. PubMed ID: 25633541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adding new dimensions to laser-scanning fluorescence microscopy.
    De AK; Goswami D
    J Microsc; 2009 Feb; 233(2):320-5. PubMed ID: 19220698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo.
    Garaschuk O; Milos RI; Konnerth A
    Nat Protoc; 2006; 1(1):380-6. PubMed ID: 17406260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes.
    Hirase H; Creso J; Singleton M; Barthó P; Buzsáki G
    Glia; 2004 Apr; 46(1):95-100. PubMed ID: 14999817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex.
    Kobat D; Horton NG; Xu C
    J Biomed Opt; 2011 Oct; 16(10):106014. PubMed ID: 22029361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in dynamic intravital multi-photon microscopy.
    Niesner RA; Hauser AE
    Cytometry A; 2011 Oct; 79(10):789-98. PubMed ID: 21905212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip clearing of arrays of 3-D cell cultures and micro-tissues.
    Grist SM; Nasseri SS; Poon T; Roskelley C; Cheung KC
    Biomicrofluidics; 2016 Jul; 10(4):044107. PubMed ID: 27493703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical Clearing and Index Matching of Tissue Samples for High-resolution Fluorescence Imaging Using SeeDB2.
    Ke MT; Imai T
    Bio Protoc; 2018 Oct; 8(20):e3046. PubMed ID: 34532520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration.
    Gibbs HC; Dodson CR; Bai Y; Lekven AC; Yeh AT
    J Biomed Opt; 2014 Dec; 19(12):126016. PubMed ID: 25539062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice.
    Bacskai BJ; Hickey GA; Skoch J; Kajdasz ST; Wang Y; Huang GF; Mathis CA; Klunk WE; Hyman BT
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12462-7. PubMed ID: 14517353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.
    Young PA; Clendenon SG; Byars JM; Dunn KW
    J Microsc; 2011 May; 242(2):148-56. PubMed ID: 21118239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional imaging of small intestine morphology using non-linear optical microscopy and endogenous signals.
    Ricard C; Vacca B; Weber P
    J Anat; 2012 Sep; 221(3):279-83. PubMed ID: 22697278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive optics via pupil ring segmentation improves spherical aberration correction for two-photon imaging of optically cleared tissues.
    Gao Y; Liu L; Yin Y; Liao J; Yu J; Wu T; Ye S; Li H; Zheng W
    Opt Express; 2020 Nov; 28(23):34935-34947. PubMed ID: 33182951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiphoton fluorescent images with a spatially varying background signal: a ML deconvolution method.
    Crivaro M; Enjieu-Kadji H; Hatanaka R; Nakauchi S; Bosch J; Judin J; Riera J; Kawashima R
    J Microsc; 2011 Jun; 242(3):311-24. PubMed ID: 21143230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging microglia in brain slices and slice cultures.
    Dailey ME; Eyo U; Fuller L; Hass J; Kurpius D
    Cold Spring Harb Protoc; 2013 Dec; 2013(12):1142-8. PubMed ID: 24298036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A versatile clearing agent for multi-modal brain imaging.
    Costantini I; Ghobril JP; Di Giovanna AP; Allegra Mascaro AL; Silvestri L; Müllenbroich MC; Onofri L; Conti V; Vanzi F; Sacconi L; Guerrini R; Markram H; Iannello G; Pavone FS
    Sci Rep; 2015 May; 5():9808. PubMed ID: 25950610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility of commonly used fluorescent dyes and viral tracers in aqueous and solvent-based tissue clearing.
    Wang P; Zhang D; Bai S; Tao B; Li S; Wang T; Shang A
    Neurosci Lett; 2020 Oct; 737():135301. PubMed ID: 32784007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.