These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24511253)

  • 21. A stochastic model for bacteria-driven micro-swimmers.
    Esparza López C; Théry A; Lauga E
    Soft Matter; 2019 Mar; 15(12):2605-2616. PubMed ID: 30821805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passive swimming of a microcapsule in vertical fluid oscillation.
    Morita T; Omori T; Ishikawa T
    Phys Rev E; 2018 Aug; 98(2-1):023108. PubMed ID: 30253563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.
    Harduf Y; Jin D; Or Y; Zhang L
    Soft Robot; 2018 Aug; 5(4):389-398. PubMed ID: 29620965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient shapes for microswimming: From three-body swimmers to helical flagella.
    Bet B; Boosten G; Dijkstra M; van Roij R
    J Chem Phys; 2017 Feb; 146(8):084904. PubMed ID: 28249423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels.
    Acemoglu A; Yesilyurt S
    Biophys J; 2014 Apr; 106(7):1537-47. PubMed ID: 24703315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033012. PubMed ID: 25871207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming.
    Das A; Styslinger M; Harris DM; Zenit R
    Rev Sci Instrum; 2022 Apr; 93(4):044103. PubMed ID: 35489898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic artificial swimmers.
    Dreyfus R; Baudry J; Roper ML; Fermigier M; Stone HA; Bibette J
    Nature; 2005 Oct; 437(7060):862-5. PubMed ID: 16208366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetically driven omnidirectional artificial microswimmers.
    Vilfan M; Osterman N; Vilfan A
    Soft Matter; 2018 May; 14(17):3415-3422. PubMed ID: 29670984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal Length of Low Reynolds Number Nanopropellers.
    Walker D; Kübler M; Morozov KI; Fischer P; Leshansky AM
    Nano Lett; 2015 Jul; 15(7):4412-6. PubMed ID: 26030270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation.
    Zhang C; Wang J; Wang W; Xi N; Wang Y; Liu L
    Bioinspir Biomim; 2016 Aug; 11(5):056006. PubMed ID: 27545346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing dynamic behaviors of three-particle paramagnetic microswimmer near a solid surface.
    Wang Q; Yang L; Yu J; Zhang L
    Robotics Biomim; 2017; 4(1):20. PubMed ID: 29201603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical exploration on buckling instability for directional control in flagellar propulsion.
    Huang W; Jawed MK
    Soft Matter; 2020 Jan; 16(3):604-613. PubMed ID: 31872849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field.
    Yu S; Ma N; Yu H; Sun H; Chang X; Wu Z; Deng J; Zhao S; Wang W; Zhang G; Zhang W; Zhao Q; Li T
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31771115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing Swimming Performance by Optimizing Structure of Helical Swimmers.
    Miao J; Li X; Liang B; Wang J; Xu X
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetic-field-induced propulsion of jellyfish-inspired soft robotic swimmers.
    Pramanik R; Verstappen RWCP; Onck PR
    Phys Rev E; 2023 Jan; 107(1-1):014607. PubMed ID: 36797941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Efficient Freestyle Magnetic Nanoswimmer.
    Li T; Li J; Morozov KI; Wu Z; Xu T; Rozen I; Leshansky AM; Li L; Wang J
    Nano Lett; 2017 Aug; 17(8):5092-5098. PubMed ID: 28677387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
    Maier AM; Weig C; Oswald P; Frey E; Fischer P; Liedl T
    Nano Lett; 2016 Feb; 16(2):906-10. PubMed ID: 26821214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.