BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24511586)

  • 1. Intra-molecular reactions as a new approach to investigate bio-radical reactivity: a case study of cysteine sulfinyl radicals.
    Durand KL; Ma X; Xia Y
    Analyst; 2014 Mar; 139(6):1327-30. PubMed ID: 24511586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-Phase Unimolecular Dissociation Reveals Dominant Base Property of Protonated Homocysteine Sulfinyl Radical Ions.
    Love-Nkansah CB; Tan L; Francisco JS; Xia Y
    Chemistry; 2016 Jan; 22(3):934-40. PubMed ID: 26531146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-phase reactivity of peptide thiyl (RS•), perthiyl (RSS•), and sulfinyl (RSO•) radical ions formed from atmospheric pressure ion/radical reactions.
    Tan L; Xia Y
    J Am Soc Mass Spectrom; 2013 Apr; 24(4):534-42. PubMed ID: 23354473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-molecule reactions reveal facile radical migration in peptides.
    Moore BN; Blanksby SJ; Julian RR
    Chem Commun (Camb); 2009 Sep; (33):5015-7. PubMed ID: 19668834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition of charge- versus radical-directed fragmentation of gas-phase protonated cysteine sulfinyl radicals.
    Love CB; Tan L; Francisco JS; Xia Y
    J Am Chem Soc; 2013 Apr; 135(16):6226-33. PubMed ID: 23527556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-phase peptide sulfinyl radical ions: formation and unimolecular dissociation.
    Tan L; Xia Y
    J Am Soc Mass Spectrom; 2012 Nov; 23(11):2011-9. PubMed ID: 22911098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible hydrogen transfer between cysteine thiyl radical and glycine and alanine in model peptides: covalent H/D exchange, radical-radical reactions, and L- to D-Ala conversion.
    Mozziconacci O; Kerwin BA; Schöneich C
    J Phys Chem B; 2010 May; 114(19):6751-62. PubMed ID: 20415493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-phase tyrosine-to-cysteine radical migration in model systems.
    Lesslie M; Osburn S; van Stipdonk MJ; Ryzhov V
    Eur J Mass Spectrom (Chichester); 2015; 21(3):589-97. PubMed ID: 26307738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and reactivity of homocysteine radical cation in the gas phase studied by ion-molecule reactions and infrared multiple photon dissociation.
    Osburn S; Burgie T; Berden G; Oomens J; O'Hair RA; Ryzhov V
    J Phys Chem A; 2013 Feb; 117(6):1144-50. PubMed ID: 22920926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mass spectrometric approach for probing the stability of bioorganic radicals.
    Tan L; Hu H; Francisco JS; Xia Y
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1887-90. PubMed ID: 24446129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical Formation in the Gas-Phase Ozonolysis of Deprotonated Cysteine.
    Khairallah GN; Maccarone AT; Pham HT; Benton TM; Ly T; da Silva G; Blanksby SJ; O'Hair RA
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12947-51. PubMed ID: 26480331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion/molecule reactions of cation radicals formed from protonated polypeptides via gas-phase ion/ion electron transfer.
    Xia Y; Chrisman PA; Pitteri SJ; Erickson DE; McLuckey SA
    J Am Chem Soc; 2006 Sep; 128(36):11792-8. PubMed ID: 16953618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n(•-), CO2(•-)(H2O)n, and O2(•-)(H2O)n.
    Höckendorf RF; Hao Q; Sun Z; Fox-Beyer BS; Cao Y; Balaj OP; Bondybey VE; Siu CK; Beyer MK
    J Phys Chem A; 2012 Apr; 116(15):3824-35. PubMed ID: 22435875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine residues as catalysts for covalent peptide and protein modification: a role for thiyl radicals?
    Schöneich C
    Biochem Soc Trans; 2011 Oct; 39(5):1254-9. PubMed ID: 21936798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy.
    Kempkes LJM; Martens J; Berden G; Oomens J
    J Mass Spectrom; 2018 Dec; 53(12):1207-1213. PubMed ID: 30281881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas-phase peptide sequencing by TEMPO-mediated radical generation.
    Lee M; Kang M; Moon B; Oh HB
    Analyst; 2009 Aug; 134(8):1706-12. PubMed ID: 20448941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native chemical ligation,thiol-ene click: a methodology for the synthesis of functionalized peptides.
    Markey L; Giordani S; Scanlan EM
    J Org Chem; 2013 May; 78(9):4270-7. PubMed ID: 23565861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step reaction mechanism reveals new antioxidant capability of cysteine disulfides against hydroxyl radical attack.
    Adhikari S; Crehuet R; Anglada JM; Francisco JS; Xia Y
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18216-18223. PubMed ID: 32680962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced addition of glycosyl thiols to alkynyl peptides: use of free-radical thiol-yne coupling for post-translational double-glycosylation of peptides.
    Lo Conte M; Pacifico S; Chambery A; Marra A; Dondoni A
    J Org Chem; 2010 Jul; 75(13):4644-7. PubMed ID: 20527977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.