BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24511878)

  • 1. Secondary structure, backbone dynamics, and structural topology of phospholamban and its phosphorylated and Arg9Cys-mutated forms in phospholipid bilayers utilizing 13C and 15N solid-state NMR spectroscopy.
    Yu X; Lorigan GA
    J Phys Chem B; 2014 Feb; 118(8):2124-33. PubMed ID: 24511878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the interaction of Arg9Cys mutated phospholamban with phospholipid bilayers by solid-state NMR spectroscopy.
    Yu X; Lorigan GA
    Biochim Biophys Acta; 2013 Nov; 1828(11):2444-9. PubMed ID: 23850636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side chain and backbone dynamics of phospholamban in phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy.
    Abu-Baker S; Lu JX; Chu S; Brinn CC; Makaroff CA; Lorigan GA
    Biochemistry; 2007 Oct; 46(42):11695-706. PubMed ID: 17910421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation.
    Paterlini MG; Thomas DD
    Biophys J; 2005 May; 88(5):3243-51. PubMed ID: 15764655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation-dependent conformational switch in spin-labeled phospholamban bound to SERCA.
    Karim CB; Zhang Z; Howard EC; Torgersen KD; Thomas DD
    J Mol Biol; 2006 May; 358(4):1032-40. PubMed ID: 16574147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute inotropic and lusitropic effects of cardiomyopathic R9C mutation of phospholamban.
    Abrol N; de Tombe PP; Robia SL
    J Biol Chem; 2015 Mar; 290(11):7130-40. PubMed ID: 25593317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic Structure and Dynamics of the Ca
    Aguayo-Ortiz R; Espinoza-Fonseca LM
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural topology of wild-type phospholamban in oriented lipid bilayers using 15N solid-state NMR spectroscopy.
    Abu-Baker S; Lu JX; Chu S; Shetty KK; Gor'kov PL; Lorigan GA
    Protein Sci; 2007 Nov; 16(11):2345-9. PubMed ID: 17905829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state (2)H and (15)N NMR studies of side-chain and backbone dynamics of phospholamban in lipid bilayers: investigation of the N27A mutation.
    Chu S; Coey AT; Lorigan GA
    Biochim Biophys Acta; 2010 Feb; 1798(2):210-5. PubMed ID: 19840770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the dynamic properties of the transmembrane segment of phospholamban incorporated into phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy.
    Tiburu EK; Karp ES; Dave PC; Damodaran K; Lorigan GA
    Biochemistry; 2004 Nov; 43(44):13899-909. PubMed ID: 15518538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (15)N Solid-state NMR spectroscopic studies on phospholamban at its phosphorylated form at ser-16 in aligned phospholipid bilayers.
    Chu S; Abu-Baker S; Lu J; Lorigan GA
    Biochim Biophys Acta; 2010 Mar; 1798(3):312-7. PubMed ID: 20044975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine 16 phosphorylation induces an order-to-disorder transition in monomeric phospholamban.
    Metcalfe EE; Traaseth NJ; Veglia G
    Biochemistry; 2005 Mar; 44(11):4386-96. PubMed ID: 15766268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Phosphorylation on Interactions between Transmembrane Domains of SERCA and Phospholamban.
    Martin PD; James ZM; Thomas DD
    Biophys J; 2018 Jun; 114(11):2573-2583. PubMed ID: 29874608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of conformational sampling of Ser16 and Thr17-phosphorylated phospholamban in interactions with SERCA.
    Sayadi M; Feig M
    Biochim Biophys Acta; 2013 Feb; 1828(2):577-85. PubMed ID: 22959711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Arg9Cys and Arg25Cys mutations on phospholamban's conformational equilibrium in membrane bilayers.
    Nelson SED; Ha KN; Gopinath T; Exline MH; Mascioni A; Thomas DD; Veglia G
    Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1335-1341. PubMed ID: 29501609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation.
    Dong X; Thomas DD
    Biochem Biophys Res Commun; 2014 Jun; 449(2):196-201. PubMed ID: 24813991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state NMR reveals structural changes in phospholamban accompanying the functional regulation of Ca2+-ATPase.
    Hughes E; Middleton DA
    J Biol Chem; 2003 Jun; 278(23):20835-42. PubMed ID: 12556441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations.
    Pantano S; Carafoli E
    Proteins; 2007 Mar; 66(4):930-40. PubMed ID: 17154419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes within the cytosolic portion of phospholamban upon release of Ca-ATPase inhibition.
    Li J; Bigelow DJ; Squier TC
    Biochemistry; 2004 Apr; 43(13):3870-9. PubMed ID: 15049694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic residues of phospholamban interact with membrane surfaces in the presence of SERCA: a new role for phospholipids in the regulation of cardiac calcium cycling?
    Hughes E; Clayton JC; Middleton DA
    Biochim Biophys Acta; 2009 Feb; 1788(2):559-66. PubMed ID: 19059204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.