These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24511935)

  • 1. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: method and application to N4.
    Bender JD; Doraiswamy S; Truhlar DG; Candler GV
    J Chem Phys; 2014 Feb; 140(5):054302. PubMed ID: 24511935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions.
    Dawes R; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2008 Feb; 128(8):084107. PubMed ID: 18315033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpolating moving least-squares methods for fitting potential-energy surfaces: further improvement of efficiency via cutoff strategies.
    Kawano A; Tokmakov IV; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2006 Feb; 124(5):054105. PubMed ID: 16468849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpolating moving least-squares methods for fitting potential energy surfaces: applications to classical dynamics calculations.
    Guo Y; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Sep; 121(11):5091-7. PubMed ID: 15352800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpolating moving least-squares methods for fitting potential energy surfaces: Improving efficiency via local approximants.
    Guo Y; Tokmakov I; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2007 Dec; 127(21):214106. PubMed ID: 18067348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction.
    Guo Y; Harding LB; Wagner AF; Minkoff M; Thompson DL
    J Chem Phys; 2007 Mar; 126(10):104105. PubMed ID: 17362059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpolating moving least-squares methods for fitting potential energy surfaces: using classical trajectories to explore configuration space.
    Dawes R; Passalacqua A; Wagner AF; Sewell TD; Minkoff M; Thompson DL
    J Chem Phys; 2009 Apr; 130(14):144107. PubMed ID: 19368429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpolating moving least-squares methods for fitting potential energy surfaces: Analysis of an application to a six-dimensional system.
    Maisuradze GG; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Dec; 121(21):10329-38. PubMed ID: 15549910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semiclassical study of cis-trans isomerization in HONO using an interpolating moving least-squares potential.
    Pham P; Guo Y
    J Chem Phys; 2013 Apr; 138(14):144304. PubMed ID: 24981532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces.
    Dawes R; Wagner AF; Thompson DL
    J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Many-Body Permutationally Invariant Polynomial Neural Network Potential Energy Surface for N
    Li J; Varga Z; Truhlar DG; Guo H
    J Chem Theory Comput; 2020 Aug; 16(8):4822-4832. PubMed ID: 32610014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of interpolating moving least squares fitting to hypervelocity collision dynamics: O(3P) + HCl.
    Camden JP; Dawes R; Thompson DL
    J Phys Chem A; 2009 Apr; 113(16):4626-30. PubMed ID: 19371121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global ab initio ground-state potential energy surface of N4.
    Paukku Y; Yang KR; Varga Z; Truhlar DG
    J Chem Phys; 2013 Jul; 139(4):044309. PubMed ID: 23901982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl.
    Sharma AR; Braams BJ; Carter S; Shepler BC; Bowman JM
    J Chem Phys; 2009 May; 130(17):174301. PubMed ID: 19425770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permutationally Invariant Potential Energy Surfaces.
    Qu C; Yu Q; Bowman JM
    Annu Rev Phys Chem; 2018 Apr; 69():151-175. PubMed ID: 29401038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permutationally Invariant Fitting of Many-Body, Non-covalent Interactions with Application to Three-Body Methane-Water-Water.
    Conte R; Qu C; Bowman JM
    J Chem Theory Comput; 2015 Apr; 11(4):1631-8. PubMed ID: 26574372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster.
    Barragán P; Prosmiti R; Wang Y; Bowman JM
    J Chem Phys; 2012 Jun; 136(22):224302. PubMed ID: 22713042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global potential energy surface describing the N((2)D) + H2O reaction and a quasiclassical trajectory study of the reaction to NH + OH.
    Homayoon Z; Bowman JM
    J Phys Chem A; 2014 Jan; 118(3):545-53. PubMed ID: 24377745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential energy surfaces for high-energy N + O
    Varga Z; Liu Y; Li J; Paukku Y; Guo H; Truhlar DG
    J Chem Phys; 2021 Feb; 154(8):084304. PubMed ID: 33639765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.