These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 24511941)
1. Theoretical study on collision dynamics of H(+) + CH4 at low energies. Gao CZ; Wang J; Wang F; Zhang FS J Chem Phys; 2014 Feb; 140(5):054308. PubMed ID: 24511941 [TBL] [Abstract][Full Text] [Related]
2. Rate coefficients and kinetic isotope effects of the X + CH4 → CH3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. Li Y; Suleimanov YV; Li J; Green WH; Guo H J Chem Phys; 2013 Mar; 138(9):094307. PubMed ID: 23485294 [TBL] [Abstract][Full Text] [Related]
3. Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction. Zhou Y; Fu B; Wang C; Collins MA; Zhang DH J Chem Phys; 2011 Feb; 134(6):064323. PubMed ID: 21322696 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation of the low-temperature partial oxidation of CH4. Page AJ; Moghtaderi B J Phys Chem A; 2009 Feb; 113(8):1539-47. PubMed ID: 19166283 [TBL] [Abstract][Full Text] [Related]
5. Energetics and mechanisms of C-H bond activation by a doubly charged metal ion: guided ion beam and theoretical studies of Ta2+ + CH4. Parke LG; Hinton CS; Armentrout PB J Phys Chem A; 2008 Oct; 112(42):10469-80. PubMed ID: 18826293 [TBL] [Abstract][Full Text] [Related]
6. Computational study of the ion-molecule reactions involving fluxional cations: CH4+ + H2--> CH5+ + H and isotope effect. Wang B; Hou H J Phys Chem A; 2005 Sep; 109(38):8537-47. PubMed ID: 16834251 [TBL] [Abstract][Full Text] [Related]
7. Quantum rate coefficients and kinetic isotope effect for the reaction Cl + CH4 → HCl + CH3 from ring polymer molecular dynamics. Li Y; Suleimanov YV; Green WH; Guo H J Phys Chem A; 2014 Mar; 118(11):1989-96. PubMed ID: 24558961 [TBL] [Abstract][Full Text] [Related]
8. An improved treatment of spectator mode vibrations in reduced dimensional quantum dynamics: application to the hydrogen abstraction reactions mu + CH4, H + CH4, D + CH4, and CH3 + CH4. Banks ST; Tautermann CS; Remmert SM; Clary DC J Chem Phys; 2009 Jul; 131(4):044111. PubMed ID: 19655841 [TBL] [Abstract][Full Text] [Related]
9. Six-dimensional and seven-dimensional quantum dynamics study of the OH + CH4 → H2O + CH3 reaction. Song H; Lee SY; Yang M; Lu Y J Chem Phys; 2013 Oct; 139(15):154310. PubMed ID: 24160516 [TBL] [Abstract][Full Text] [Related]
10. Low energy (e, 2e) study from the 1t(2) orbital of CH4. Xu S; Chaluvadi H; Ren X; Pflüger T; Senftleben A; Ning CG; Yan S; Zhang P; Yang J; Ma X; Ullrich J; Madison DH; Dorn A J Chem Phys; 2012 Jul; 137(2):024301. PubMed ID: 22803530 [TBL] [Abstract][Full Text] [Related]
11. Fast Shepard interpolation on graphics processing units: potential energy surfaces and dynamics for H + CH4 → H2 + CH3. Welsch R; Manthe U J Chem Phys; 2013 Apr; 138(16):164118. PubMed ID: 23635122 [TBL] [Abstract][Full Text] [Related]
12. Direct ab initio dynamics study of radical C4H (X̃2Σ+) + CH4 reaction. Huo RP; Zhang X; Huang XR; Li JL; Sun CC J Phys Chem A; 2011 Apr; 115(15):3576-82. PubMed ID: 21443216 [TBL] [Abstract][Full Text] [Related]
13. A test of the continuous configuration time-dependent self-consistent field (CC-TDSCF) method on the H + CH4 reaction. Zhang L; Lee SY; Zhang DH J Phys Chem A; 2006 Apr; 110(16):5513-9. PubMed ID: 16623484 [TBL] [Abstract][Full Text] [Related]
14. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment. Sementa L; Wijzenbroek M; van Kolck BJ; Somers MF; Al-Halabi A; Busnengo HF; Olsen RA; Kroes GJ; Rutkowski M; Thewes C; Kleimeier NF; Zacharias H J Chem Phys; 2013 Jan; 138(4):044708. PubMed ID: 23387616 [TBL] [Abstract][Full Text] [Related]
15. The dynamics of the H(+) + D(2) reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results. Jambrina PG; Aoiz FJ; Bulut N; Smith SC; Balint-Kurti GG; Hankel M Phys Chem Chem Phys; 2010 Feb; 12(5):1102-15. PubMed ID: 20094675 [TBL] [Abstract][Full Text] [Related]
16. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system. Li J; Chen J; Zhao Z; Xie D; Zhang DH; Guo H J Chem Phys; 2015 May; 142(20):204302. PubMed ID: 26026442 [TBL] [Abstract][Full Text] [Related]
17. NH4(+) + CH4 gas phase collisions as a possible analogue to protonated peptide/surface induced dissociation. Barnes GL; Hase WL J Phys Chem A; 2009 Jul; 113(26):7543-7. PubMed ID: 19358592 [TBL] [Abstract][Full Text] [Related]
18. Existence of an exceptional reaction pathway for H3(+) formation observed in collision-induced dissociation of methane ions at 1000 eV. Shoji F; Nagai T; Morimoto F J Chem Phys; 2011 Feb; 134(6):064310. PubMed ID: 21322683 [TBL] [Abstract][Full Text] [Related]
19. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001). Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007 [TBL] [Abstract][Full Text] [Related]
20. Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study. Radak BK; Yockel S; Kim D; Schatz GC J Phys Chem A; 2009 Jul; 113(26):7218-26. PubMed ID: 19323516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]