These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24511972)

  • 1. Enhanced ordering of water at hydrophobic surfaces.
    Strazdaite S; Versluis J; Backus EH; Bakker HJ
    J Chem Phys; 2014 Feb; 140(5):054711. PubMed ID: 24511972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consequences of water between two hydrophobic surfaces on adhesion and wetting.
    Defante AP; Burai TN; Becker ML; Dhinojwala A
    Langmuir; 2015 Mar; 31(8):2398-406. PubMed ID: 25668056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water orientation at hydrophobic interfaces.
    Strazdaite S; Versluis J; Bakker HJ
    J Chem Phys; 2015 Aug; 143(8):084708. PubMed ID: 26328868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance.
    York RL; Holinga GJ; Somorjai GA
    Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Ca
    Feng RJ; Lin L; Li YY; Liu MH; Guo Y; Zhang Z
    Biophys J; 2017 May; 112(10):2173-2183. PubMed ID: 28538154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.
    Vila Verde A; Bolhuis PG; Campen RK
    J Phys Chem B; 2012 Aug; 116(31):9467-81. PubMed ID: 22788714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic molecules slow down the hydrogen-bond dynamics of water.
    Bakulin AA; Pshenichnikov MS; Bakker HJ; Petersen C
    J Phys Chem A; 2011 Mar; 115(10):1821-9. PubMed ID: 21214234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roughness and ordering at the interface of oxidized polystyrene and water.
    Muntean SA; Kemper M; van IJzendoorn LJ; Lyulin AV
    Langmuir; 2011 Jul; 27(14):8678-86. PubMed ID: 21699178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study.
    Nihonyanagi S; Yamaguchi S; Tahara T
    J Chem Phys; 2009 May; 130(20):204704. PubMed ID: 19485472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duramycin-induced destabilization of a phosphatidylethanolamine monolayer at the air-water interface observed by vibrational sum-frequency generation spectroscopy.
    Rzeźnicka II; Sovago M; Backus EH; Bonn M; Yamada T; Kobayashi T; Kawai M
    Langmuir; 2010 Oct; 26(20):16055-62. PubMed ID: 20873825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The free OD at the air/D2O interface is structurally and dynamically heterogeneous.
    Tong Y; Vila Verde A; Campen RK
    J Phys Chem B; 2013 Oct; 117(39):11753-64. PubMed ID: 24001361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing of lipase activity at air/water interface by sum-frequency generation spectroscopy.
    Niaura G; Kuprionis Z; Ignatjev I; Kazemekaite M; Valincius G; Talaikyte Z; Razumas V; Svendsen A
    J Phys Chem B; 2008 Apr; 112(13):4094-101. PubMed ID: 18324801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational density of states of hydration water at biomolecular sites: hydrophobicity promotes low density amorphous ice behavior.
    Russo D; Teixeira J; Kneller L; Copley JR; Ollivier J; Perticaroli S; Pellegrini E; Gonzalez MA
    J Am Chem Soc; 2011 Apr; 133(13):4882-8. PubMed ID: 21405120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and vibrational spectroscopy of salt water/air interfaces: predictions from classical molecular dynamics simulations.
    Brown EC; Mucha M; Jungwirth P; Tobias DJ
    J Phys Chem B; 2005 Apr; 109(16):7934-40. PubMed ID: 16851926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial structure of a DOPA-inspired adhesive polymer studied by sum frequency generation vibrational spectroscopy.
    Leng C; Liu Y; Jenkins C; Meredith H; Wilker JJ; Chen Z
    Langmuir; 2013 Jun; 29(22):6659-64. PubMed ID: 23663073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structuring of interfacial water on silica surface in cyclohexane studied by surface forces measurement and sum frequency generation vibrational spectroscopy.
    Mizukami M; Kobayashi A; Kurihara K
    Langmuir; 2012 Oct; 28(40):14284-90. PubMed ID: 22974462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy.
    Chen X; Hua W; Huang Z; Allen HC
    J Am Chem Soc; 2010 Aug; 132(32):11336-42. PubMed ID: 20698700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Structure at the Hydrophobic Nanodroplet Surface Revealed by Vibrational Sum Frequency Scattering Using Isotopic Dilution.
    Pullanchery S; Kulik S; Roke S
    J Phys Chem B; 2022 Apr; 126(16):3186-3192. PubMed ID: 35417164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water structural transformation at molecular hydrophobic interfaces.
    Davis JG; Gierszal KP; Wang P; Ben-Amotz D
    Nature; 2012 Nov; 491(7425):582-5. PubMed ID: 23172216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water penetration/accommodation and phase behaviour of the neutral Langmuir monolayer at the air/water interface probed with sum frequency generation vibrational spectroscopy (SFG-VS).
    Zhang Z; Zheng DS; Guo Y; Wang HF
    Phys Chem Chem Phys; 2009 Feb; 11(6):991-1002. PubMed ID: 19177218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.