These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24512011)

  • 1. A self-reducible and alcohol-soluble copper-based metal-organic decomposition ink for printed electronics.
    Shin DH; Woo S; Yem H; Cha M; Cho S; Kang M; Jeong S; Kim Y; Kang K; Piao Y
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3312-9. PubMed ID: 24512011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.
    Farraj Y; Grouchko M; Magdassi S
    Chem Commun (Camb); 2015 Jan; 51(9):1587-90. PubMed ID: 25482984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the Types of Alkanolamines on the Properties of Copper(II) Formate-Based Conductive Ink.
    Yang W; Guo Z; Zhao X; Zhang X; List-Kratochvil EJW
    Langmuir; 2024 Apr; 40(13):7095-7105. PubMed ID: 38511863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.
    Kell AJ; Paquet C; Mozenson O; Djavani-Tabrizi I; Deore B; Liu X; Lopinski GP; James R; Hettak K; Shaker J; Momciu A; Ferrigno J; Ferrand O; Hu JX; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17226-17237. PubMed ID: 28466636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu salt ink formulation for printed electronics using photonic sintering.
    Araki T; Sugahara T; Jiu J; Nagao S; Nogi M; Koga H; Uchida H; Shinozaki K; Suganuma K
    Langmuir; 2013 Sep; 29(35):11192-7. PubMed ID: 23919600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.
    Zhang Y; Zhu P; Li G; Zhao T; Fu X; Sun R; Zhou F; Wong CP
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):560-7. PubMed ID: 24328198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.
    Draper GL; Dharmadasa R; Staats ME; Lavery BW; Druffel T
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16478-85. PubMed ID: 26154246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Synthesis of Copper Nanoparticles for Printed Electronic Materials Using Liquid Phase Reduction Method.
    Li K; Jiang X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N,N-Diethyl-diaminopropane-copper(ii) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals.
    Togashi T; Nakayama M; Miyake R; Uruma K; Kanaizuka K; Kurihara M
    Dalton Trans; 2017 Sep; 46(37):12487-12493. PubMed ID: 28895601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MODs vs. NPs: Vying for the Future of Printed Electronics.
    Douglas SP; Mrig S; Knapp CE
    Chemistry; 2021 Jun; 27(31):8062-8081. PubMed ID: 33464657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductive films prepared from inks based on copper nanoparticles synthesized by transferred arc discharge.
    Fu Q; Stein M; Li W; Zheng J; Kruis FE
    Nanotechnology; 2020 Jan; 31(2):025302. PubMed ID: 31530758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs.
    Hayati-Roodbari N; Wheeldon A; Hendler C; Fian A; Trattnig R
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.