These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24512107)

  • 1. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.
    Ito S; Kato HE; Taniguchi R; Iwata T; Nureki O; Kandori H
    J Am Chem Soc; 2014 Mar; 136(9):3475-82. PubMed ID: 24512107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR spectroscopy of a light-driven compatible sodium ion-proton pumping rhodopsin at 77 K.
    Ono H; Inoue K; Abe-Yoshizumi R; Kandori H
    J Phys Chem B; 2014 May; 118(18):4784-92. PubMed ID: 24773264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant.
    Shibata M; Ihara K; Kandori H
    Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization.
    Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the structural changes occurring during the primary phototransition of two different channelrhodopsins from Chlamydomonas algae.
    Ogren JI; Yi A; Mamaev S; Li H; Lugtenburg J; DeGrip WJ; Spudich JL; Rothschild KJ
    Biochemistry; 2015 Jan; 54(2):377-88. PubMed ID: 25469620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins.
    Furutani Y; Shibata M; Kandori H
    Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-bonding changes of internal water molecules upon the actions of microbial rhodopsins studied by FTIR spectroscopy.
    Furutani Y; Kandori H
    Biochim Biophys Acta; 2014 May; 1837(5):598-605. PubMed ID: 24041645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote.
    Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H
    Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.
    Shibata M; Kandori H
    Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of protein-bound water molecules in microbial rhodopsins.
    Gerwert K; Freier E; Wolf S
    Biochim Biophys Acta; 2014 May; 1837(5):606-13. PubMed ID: 24055285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-bonding network at the cytoplasmic region of a light-driven sodium pump rhodopsin KR2.
    Tomida S; Ito S; Inoue K; Kandori H
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):684-691. PubMed ID: 29852143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QM/MM simulations of vibrational spectra of bacteriorhodopsin and channelrhodopsin-2.
    Welke K; Watanabe HC; Wolter T; Gaus M; Elstner M
    Phys Chem Chem Phys; 2013 May; 15(18):6651-9. PubMed ID: 23385325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water molecules in the schiff base region of bacteriorhodopsin.
    Shibata M; Tanimoto T; Kandori H
    J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.
    Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK
    J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.