These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 24512115)
1. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Yang MM; Wen SS; Mavrodi DV; Mavrodi OV; von Wettstein D; Thomashow LS; Guo JH; Weller DM Phytopathology; 2014 Mar; 104(3):248-56. PubMed ID: 24512115 [TBL] [Abstract][Full Text] [Related]
2. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279 [TBL] [Abstract][Full Text] [Related]
3. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Thomashow LS; Weller DM J Bacteriol; 1988 Aug; 170(8):3499-508. PubMed ID: 2841289 [TBL] [Abstract][Full Text] [Related]
4. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061 [TBL] [Abstract][Full Text] [Related]
5. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681 [TBL] [Abstract][Full Text] [Related]
6. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Daval S; Lebreton L; Gazengel K; Boutin M; Guillerm-Erckelboudt AY; Sarniguet A Mol Plant Pathol; 2011 Dec; 12(9):839-54. PubMed ID: 21726382 [TBL] [Abstract][Full Text] [Related]
10. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826 [TBL] [Abstract][Full Text] [Related]
11. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Gurusiddaiah S; Weller DM; Sarkar A; Cook RJ Antimicrob Agents Chemother; 1986 Mar; 29(3):488-95. PubMed ID: 3087284 [TBL] [Abstract][Full Text] [Related]
12. Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. D'aes J; Hua GK; De Maeyer K; Pannecoucque J; Forrez I; Ongena M; Dietrich LE; Thomashow LS; Mavrodi DV; Höfte M Phytopathology; 2011 Aug; 101(8):996-1004. PubMed ID: 21405991 [TBL] [Abstract][Full Text] [Related]
13. Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. Nielsen TH; Thrane C; Christophersen C; Anthoni U; Sørensen J J Appl Microbiol; 2000 Dec; 89(6):992-1001. PubMed ID: 11123472 [TBL] [Abstract][Full Text] [Related]
14. Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Wei HL; Zhang LQ Antonie Van Leeuwenhoek; 2006 Feb; 89(2):267-80. PubMed ID: 16710638 [TBL] [Abstract][Full Text] [Related]
15. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Olorunleke FE; Hua GK; Kieu NP; Ma Z; Höfte M Environ Microbiol Rep; 2015 Oct; 7(5):774-81. PubMed ID: 26085277 [TBL] [Abstract][Full Text] [Related]
16. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. Siddiqui IA; Shaukat SS J Appl Microbiol; 2005; 98(1):43-55. PubMed ID: 15610416 [TBL] [Abstract][Full Text] [Related]
17. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici. Zhang X; Chen X; Qiao X; Fan X; Huo X; Zhang D J Sep Sci; 2021 Feb; 44(4):931-940. PubMed ID: 33326164 [TBL] [Abstract][Full Text] [Related]
18. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. de Werra P; Péchy-Tarr M; Keel C; Maurhofer M Appl Environ Microbiol; 2009 Jun; 75(12):4162-74. PubMed ID: 19376896 [TBL] [Abstract][Full Text] [Related]
19. Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Marchi M; Boutin M; Gazengel K; Rispe C; Gauthier JP; Guillerm-Erckelboudt AY; Lebreton L; Barret M; Daval S; Sarniguet A Environ Microbiol Rep; 2013 Jun; 5(3):393-403. PubMed ID: 23754720 [TBL] [Abstract][Full Text] [Related]
20. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]