BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 24512128)

  • 1. Tumor-selective, futile redox cycle-induced bystander effects elicited by NQO1 bioactivatable radiosensitizing drugs in triple-negative breast cancers.
    Cao L; Li LS; Spruell C; Xiao L; Chakrabarti G; Bey EA; Reinicke KE; Srougi MC; Moore Z; Dong Y; Vo P; Kabbani W; Yang CR; Wang X; Fattah F; Morales JC; Motea EA; Bornmann WG; Yordy JS; Boothman DA
    Antioxid Redox Signal; 2014 Jul; 21(2):237-50. PubMed ID: 24512128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis.
    Huang X; Dong Y; Bey EA; Kilgore JA; Bair JS; Li LS; Patel M; Parkinson EI; Wang Y; Williams NS; Gao J; Hergenrother PJ; Boothman DA
    Cancer Res; 2012 Jun; 72(12):3038-47. PubMed ID: 22532167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NQO1-Mediated Tumor-Selective Lethality and Radiosensitization for Head and Neck Cancer.
    Li LS; Reddy S; Lin ZH; Liu S; Park H; Chun SG; Bornmann WG; Thibodeaux J; Yan J; Chakrabarti G; Xie XJ; Sumer BD; Boothman DA; Yordy JS
    Mol Cancer Ther; 2016 Jul; 15(7):1757-67. PubMed ID: 27196777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalase abrogates β-lapachone-induced PARP1 hyperactivation-directed programmed necrosis in NQO1-positive breast cancers.
    Bey EA; Reinicke KE; Srougi MC; Varnes M; Anderson VE; Pink JJ; Li LS; Patel M; Cao L; Moore Z; Rommel A; Boatman M; Lewis C; Euhus DM; Bornmann WG; Buchsbaum DJ; Spitz DR; Gao J; Boothman DA
    Mol Cancer Ther; 2013 Oct; 12(10):2110-20. PubMed ID: 23883585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone.
    Chakrabarti G; Silvers MA; Ilcheva M; Liu Y; Moore ZR; Luo X; Gao J; Anderson G; Liu L; Sarode V; Gerber DE; Burma S; DeBerardinis RJ; Gerson SL; Boothman DA
    Sci Rep; 2015 Nov; 5():17066. PubMed ID: 26602448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct responses of compartmentalized glutathione redox potentials to pharmacologic quinones targeting NQO1.
    Kolossov VL; Ponnuraj N; Beaudoin JN; Leslie MT; Kenis PJ; Gaskins HR
    Biochem Biophys Res Commun; 2017 Jan; 483(1):680-686. PubMed ID: 27986568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NQO1-dependent, Tumor-selective Radiosensitization of Non-small Cell Lung Cancers.
    Motea EA; Huang X; Singh N; Kilgore JA; Williams NS; Xie XJ; Gerber DE; Beg MS; Bey EA; Boothman DA
    Clin Cancer Res; 2019 Apr; 25(8):2601-2609. PubMed ID: 30617135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1.
    Lin LC; Lee HT; Chien PJ; Huang YH; Chang MY; Lee YC; Chang WW
    Int J Med Sci; 2020; 17(14):2214-2224. PubMed ID: 32922184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The NQO1 bioactivatable drug, β-lapachone, alters the redox state of NQO1+ pancreatic cancer cells, causing perturbation in central carbon metabolism.
    Silvers MA; Deja S; Singh N; Egnatchik RA; Sudderth J; Luo X; Beg MS; Burgess SC; DeBerardinis RJ; Boothman DA; Merritt ME
    J Biol Chem; 2017 Nov; 292(44):18203-18216. PubMed ID: 28916726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upregulation of NAD(P)H:quinone oxidoreductase by radiation potentiates the effect of bioreductive beta-lapachone on cancer cells.
    Choi EK; Terai K; Ji IM; Kook YH; Park KH; Oh ET; Griffin RJ; Lim BU; Kim JS; Lee DS; Boothman DA; Loren M; Song CW; Park HJ
    Neoplasia; 2007 Aug; 9(8):634-42. PubMed ID: 17786182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Albumin binding revitalizes NQO1 bioactivatable drugs as novel therapeutics for pancreatic cancer.
    Dou L; Liu H; Wang K; Liu J; Liu L; Ye J; Wang R; Deng H; Qian F
    J Control Release; 2022 Sep; 349():876-889. PubMed ID: 35907592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. beta-Lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3.
    Planchon SM; Pink JJ; Tagliarino C; Bornmann WG; Varnes ME; Boothman DA
    Exp Cell Res; 2001 Jul; 267(1):95-106. PubMed ID: 11412042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy.
    Li LS; Bey EA; Dong Y; Meng J; Patra B; Yan J; Xie XJ; Brekken RA; Barnett CC; Bornmann WG; Gao J; Boothman DA
    Clin Cancer Res; 2011 Jan; 17(2):275-85. PubMed ID: 21224367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and molecular responses to topoisomerase I poisons. Exploiting synergy for improved radiotherapy.
    Miyamoto S; Huang TT; Wuerzberger-Davis S; Bornmann WG; Pink JJ; Tagliarino C; Kinsella TJ; Boothman DA
    Ann N Y Acad Sci; 2000; 922():274-92. PubMed ID: 11193903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Susceptibility of cancer cells to beta-lapachone is enhanced by ionizing radiation.
    Park HJ; Ahn KJ; Ahn SD; Choi E; Lee SW; Williams B; Kim EJ; Griffin R; Bey EA; Bornmann WG; Gao J; Park HJ; Boothman DA; Song CW
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):212-9. PubMed ID: 15629614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented Concentration of Isopentyl-Deoxynyboquinone in Tumors Selectively Kills NAD(P)H Quinone Oxidoreductase 1-Positive Cancer Cells through Programmed Necrotic and Apoptotic Mechanisms.
    Wang J; Su X; Jiang L; Boudreau MW; Chatkewitz LE; Kilgore JA; Zahid KR; Williams NS; Chen Y; Liu S; Hergenrother PJ; Huang X
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Following anticancer drug activity in cell lysates with DNA devices.
    Kahanda D; Singh N; Boothman DA; Slinker JD
    Biosens Bioelectron; 2018 Nov; 119():1-9. PubMed ID: 30098460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells.
    Calahorra J; Blaya-Cánovas JL; Castellini-Pérez O; Aparicio-Puerta E; Cives-Losada C; Marin JJG; Rementeria M; Cara FE; López-Tejada A; Griñán-Lisón C; Aulicino F; Berger I; Marchal JA; Delgado-Almenta V; Granados-Principal S
    Biomed Pharmacother; 2024 May; 174():116439. PubMed ID: 38518601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAMPT inhibition sensitizes pancreatic adenocarcinoma cells to tumor-selective, PAR-independent metabolic catastrophe and cell death induced by β-lapachone.
    Moore Z; Chakrabarti G; Luo X; Ali A; Hu Z; Fattah FJ; Vemireddy R; DeBerardinis RJ; Brekken RA; Boothman DA
    Cell Death Dis; 2015 Jan; 6(1):e1599. PubMed ID: 25590809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-Lapachone Induces NAD(P)H:Quinone Oxidoreductase-1- and Oxidative Stress-Dependent Heat Shock Protein 90 Cleavage and Inhibits Tumor Growth and Angiogenesis.
    Wu Y; Wang X; Chang S; Lu W; Liu M; Pang X
    J Pharmacol Exp Ther; 2016 Jun; 357(3):466-75. PubMed ID: 27048660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.