BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24512266)

  • 21. Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neurons.
    Rygh LJ; Suzuki R; Rahman W; Wong Y; Vonsy JL; Sandhu H; Webber M; Hunt S; Dickenson AH
    Eur J Neurosci; 2006 Aug; 24(3):761-72. PubMed ID: 16930406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitization of the transient receptor potential vanilloid type 1 ion channel by isoflurane or sevoflurane does not result in extracellular signal-regulated kinase 1/2 activation in rat spinal dorsal horn neurons.
    White JP; Cibelli M; Fidalgo AR; Paule CC; Anderson PJ; Jenes A; Rice AS; Nagy I
    Neuroscience; 2010 Mar; 166(2):633-8. PubMed ID: 20038442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons.
    Moreno-López Y; Martínez-Lorenzana G; Condés-Lara M; Rojas-Piloni G
    Neuropeptides; 2013 Apr; 47(2):117-23. PubMed ID: 23102456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.
    Toth CC; Jedrzejewski NM; Ellis CL; Frey WH
    Mol Pain; 2010 Mar; 6():16. PubMed ID: 20236533
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ablation of primary afferent terminals reduces nicotinic receptor expression and the nociceptive responses to nicotinic agonists in the spinal cord.
    Khan IM; Wennerholm M; Singletary E; Polston K; Zhang L; Deerinck T; Yaksh TL; Taylor P
    J Neurocytol; 2004 Sep; 33(5):543-56. PubMed ID: 15906161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient receptor potential vanilloid type 1 receptor regulates glutamatergic synaptic inputs to the spinothalamic tract neurons of the spinal cord deep dorsal horn.
    Kim H; Cui L; Kim J; Kim SJ
    Neuroscience; 2009 May; 160(2):508-16. PubMed ID: 19236908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sodium channel expression and the molecular pathophysiology of pain after SCI.
    Hains BC; Waxman SG
    Prog Brain Res; 2007; 161():195-203. PubMed ID: 17618978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms?
    Ji RR
    Pulm Pharmacol Ther; 2015 Dec; 35():81-6. PubMed ID: 26351759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Calcium Channel α2δ1 Subunit: Interactional Targets in Primary Sensory Neurons and Role in Neuropathic Pain.
    Cui W; Wu H; Yu X; Song T; Xu X; Xu F
    Front Cell Neurosci; 2021; 15():699731. PubMed ID: 34658790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting novel peripheral mediators for the treatment of chronic pain.
    Richards N; McMahon SB
    Br J Anaesth; 2013 Jul; 111(1):46-51. PubMed ID: 23794644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuronal Adenylyl Cyclase Targeting Central Plasticity for the Treatment of Chronic Pain.
    Li XH; Chen QY; Zhuo M
    Neurotherapeutics; 2020 Jul; 17(3):861-873. PubMed ID: 32935298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T-type calcium channels in chronic pain: mouse models and specific blockers.
    François A; Laffray S; Pizzoccaro A; Eschalier A; Bourinet E
    Pflugers Arch; 2014 Apr; 466(4):707-17. PubMed ID: 24590509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Analgesics with Peripheral Targets.
    Ciotu CI; Fischer MJM
    Neurotherapeutics; 2020 Jul; 17(3):784-825. PubMed ID: 33063247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of pain in nonmalignant disease.
    Harvey VL; Dickenson AH
    Curr Opin Support Palliat Care; 2008 Jun; 2(2):133-9. PubMed ID: 18685411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analgesic targets: today and tomorrow.
    Rodger IW
    Inflammopharmacology; 2009 Jun; 17(3):151-61. PubMed ID: 19507000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Perspectives of the direct search for analgesics: new "targets" (lecture)].
    Churiukanov VV; Churiukanov MV
    Anesteziol Reanimatol; 2003; (5):10-3. PubMed ID: 14671901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-permeable acid-sensing ion channel in nociceptive plasticity: a new target for pain control.
    Xu TL; Duan B
    Prog Neurobiol; 2009 Feb; 87(3):171-80. PubMed ID: 19388206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinesins: Motor Proteins as Novel Target for the Treatment of Chronic Pain.
    Shantanu PA; Sharma D; Sharma M; Vaidya S; Sharma K; Kalia K; Tao YX; Shard A; Tiwari V
    Mol Neurobiol; 2019 Jun; 56(6):3854-3864. PubMed ID: 30215159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxins in pain.
    Cardoso FC; Hasan M; Zhao T; Lewis RJ
    Curr Opin Support Palliat Care; 2018 Jun; 12(2):132-141. PubMed ID: 29438128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets.
    Holzer P
    Expert Opin Ther Targets; 2004 Apr; 8(2):107-23. PubMed ID: 15102553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.