These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24512498)

  • 1. Cost-effective three-dimensional printing of visibly transparent microchips within minutes.
    Shallan AI; Smejkal P; Corban M; Guijt RM; Breadmore MC
    Anal Chem; 2014 Mar; 86(6):3124-30. PubMed ID: 24512498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a 3D printer using scanning projection stereolithography.
    Lee MP; Cooper GJ; Hinkley T; Gibson GM; Padgett MJ; Cronin L
    Sci Rep; 2015 Apr; 5():9875. PubMed ID: 25906401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
    Gong H; Bickham BP; Woolley AT; Nordin GP
    Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDMS lab-on-a-chip fabrication using 3D printed templates.
    Comina G; Suska A; Filippini D
    Lab Chip; 2014 Jan; 14(2):424-30. PubMed ID: 24281262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct 3D-printing of cell-laden constructs in microfluidic architectures.
    Liu J; Hwang HH; Wang P; Whang G; Chen S
    Lab Chip; 2016 Apr; 16(8):1430-8. PubMed ID: 26980159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization.
    Luo Z; Zhang H; Chen R; Li H; Cheng F; Zhang L; Liu J; Kong T; Zhang Y; Wang H
    Microsyst Nanoeng; 2023; 9():103. PubMed ID: 37593440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Micro Free-Flow Electrophoresis Device.
    Anciaux SK; Geiger M; Bowser MT
    Anal Chem; 2016 Aug; 88(15):7675-82. PubMed ID: 27377354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry film microchips for miniaturised separations.
    Guijt RM; Candish E; Breadmore MC
    Electrophoresis; 2009 Dec; 30(24):4219-24. PubMed ID: 20013906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds.
    King PH; Jones G; Morgan H; de Planque MR; Zauner KP
    Lab Chip; 2014 Feb; 14(4):722-9. PubMed ID: 24336841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Materials for High-Resolution 3D Printing of Microfluidic Devices with Integrated Droplet Size Regulation.
    Weigel N; Männel MJ; Thiele J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31086-31101. PubMed ID: 34176257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.