BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24512553)

  • 1. Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel.
    Zhou J; Du X; Gao Y; Shi J; Xu B
    J Am Chem Soc; 2014 Feb; 136(8):2970-3. PubMed ID: 24512553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels.
    Shi J; Yuan D; Haburcak R; Zhang Q; Zhao C; Zhang X; Xu B
    Chemistry; 2015 Dec; 21(50):18047-51. PubMed ID: 26462722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.
    Chin SM; Synatschke CV; Liu S; Nap RJ; Sather NA; Wang Q; Álvarez Z; Edelbrock AN; Fyrner T; Palmer LC; Szleifer I; Olvera de la Cruz M; Stupp SI
    Nat Commun; 2018 Jun; 9(1):2395. PubMed ID: 29921928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels.
    Ma M; Kuang Y; Gao Y; Zhang Y; Gao P; Xu B
    J Am Chem Soc; 2010 Mar; 132(8):2719-28. PubMed ID: 20131781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling supramolecular filament chirality of hydrogel by co-assembly of enantiomeric aromatic peptides.
    Yang X; Lu H; Tao Y; Zhang H; Wang H
    J Nanobiotechnology; 2022 Feb; 20(1):77. PubMed ID: 35144637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium ions to cross-link supramolecular nanofibers to tune the elasticity of hydrogels over orders of magnitude.
    Shi J; Gao Y; Zhang Y; Pan Y; Xu B
    Langmuir; 2011 Dec; 27(23):14425-31. PubMed ID: 21978281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo.
    Yang Z; Liang G; Wang L; Xu B
    J Am Chem Soc; 2006 Mar; 128(9):3038-43. PubMed ID: 16506785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation.
    Wang L; Wu Y; Hu T; Ma PX; Guo B
    Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent Capture of Aligned Self-Assembling Nanofibers.
    Li IC; Hartgerink JD
    J Am Chem Soc; 2017 Jun; 139(23):8044-8050. PubMed ID: 28581735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels.
    Du X; Li J; Gao Y; Kuang Y; Xu B
    Chem Commun (Camb); 2012 Feb; 48(15):2098-100. PubMed ID: 22246046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels.
    Li J; Kuang Y; Shi J; Gao Y; Zhou J; Xu B
    Beilstein J Org Chem; 2013; 9():908-17. PubMed ID: 23766806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixing biomimetic heterodimers of nucleopeptides to generate biocompatible and biostable supramolecular hydrogels.
    Yuan D; Du X; Shi J; Zhou N; Zhou J; Xu B
    Angew Chem Int Ed Engl; 2015 May; 54(19):5705-8. PubMed ID: 25783774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators.
    Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I
    Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-manipulated hydrogelation of small molecules for biomedical applications.
    Cheng C; Sun Q; Wang X; He B; Jiang T
    Acta Biomater; 2022 Oct; 151():88-105. PubMed ID: 35970483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Sep; 60():144-153. PubMed ID: 28733255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width.
    Zhang Y; Zhang B; Kuang Y; Gao Y; Shi J; Zhang XX; Xu B
    J Am Chem Soc; 2013 Apr; 135(13):5008-11. PubMed ID: 23521132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling multidomain peptide fibers with aromatic cores.
    Bakota EL; Sensoy O; Ozgur B; Sayar M; Hartgerink JD
    Biomacromolecules; 2013 May; 14(5):1370-8. PubMed ID: 23480446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness.
    Ye D; Cheng Q; Zhang Q; Wang Y; Chang C; Li L; Peng H; Zhang L
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43154-43162. PubMed ID: 29161020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.