BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24512659)

  • 21. Thermotolerance expression in mitotic CHO cells without increased translation of heat shock proteins.
    Borrelli MJ; Stafford DM; Karczewski LA; Rausch CM; Lee YJ; Corry PM
    J Cell Physiol; 1996 Dec; 169(3):420-8. PubMed ID: 8952691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermotolerance induced at a fever temperature of 40 degrees C protects cells against hyperthermia-induced apoptosis mediated by death receptor signalling.
    Bettaieb A; Averill-Bates DA
    Biochem Cell Biol; 2008 Dec; 86(6):521-38. PubMed ID: 19088800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct evidence for the intracellular localization of Hsp104 in Saccharomyces cerevisiae by immunoelectron microscopy.
    Kawai R; Fujita K; Iwahashi H; Komatsu Y
    Cell Stress Chaperones; 1999 Mar; 4(1):46-53. PubMed ID: 10467108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A subset of histamine receptor ligands improve thermotolerance of the yeast Saccharomyces cerevisiae.
    Papamichael K; Delitheos B; Tiligada E
    J Appl Microbiol; 2013 Feb; 114(2):492-501. PubMed ID: 23121472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Heat shock-induced changes in the respiration of the yeast Saccharomyces cerevisiae].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Kiseleva VA; Voĭnikov VK
    Mikrobiologiia; 2001; 70(4):531-5. PubMed ID: 11558280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae.
    Mir SS; Fiedler D; Cashikar AG
    Mol Cell Biol; 2009 Jan; 29(1):187-200. PubMed ID: 18936161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae.
    Trotter EW; Kao CM; Berenfeld L; Botstein D; Petsko GA; Gray JV
    J Biol Chem; 2002 Nov; 277(47):44817-25. PubMed ID: 12239211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acquisition of thermotolerance induced by heat and arsenite in HeLa S3 cells: multiple pathways to induce tolerance?
    Kampinga HH; Brunsting JF; Konings AW
    J Cell Physiol; 1992 Feb; 150(2):406-15. PubMed ID: 1370842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast.
    Watson K; Dunlop G; Cavicchioli R
    FEBS Lett; 1984 Jul; 172(2):299-302. PubMed ID: 6378658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance.
    Vianna CR; Silva CL; Neves MJ; Rosa CA
    Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in thermotolerance induced by heat or sodium arsenite: correlation between redistribution of a 26-kDa protein and development of protein synthesis-independent thermotolerance in CHO cells.
    Lee YJ; Kim DH; Hou ZZ; Corry PM
    Radiat Res; 1991 Sep; 127(3):325-34. PubMed ID: 1886989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae.
    Lewis JG; Learmonth RP; Watson K
    Microbiology (Reading); 1995 Mar; 141 ( Pt 3)():687-94. PubMed ID: 7711907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hsp104 as a key modulator of prion-mediated oxidative stress in Saccharomyces cerevisiae.
    Singh K; Saleh AA; Bhadra AK; Roy I
    Biochem J; 2013 Sep; 454(2):217-25. PubMed ID: 23746301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducibility of the response of yeast cells to peroxide stress.
    Collinson LP; Dawes IW
    J Gen Microbiol; 1992 Feb; 138(2):329-335. PubMed ID: 1564443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide.
    Flattery-O'Brien J; Collinson LP; Dawes IW
    J Gen Microbiol; 1993 Mar; 139(3):501-7. PubMed ID: 8473859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress dose-dependent suppression of heat shock protein gene expression by inhibiting protein synthesis during heat shock treatment.
    Mizuno S; Ishii A; Murakami Y; Akagawa H
    Cell Struct Funct; 1997 Feb; 22(1):7-13. PubMed ID: 9113384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast thermotolerance does not require protein synthesis.
    Hall BG
    J Bacteriol; 1983 Dec; 156(3):1363-5. PubMed ID: 6358199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae.
    Kaul SC; Obuchi K; Iwahashi H; Komatsu Y
    Cell Mol Biol; 1992 Apr; 38(2):135-43. PubMed ID: 1571943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae.
    Grant CM; Firoozan M; Tuite MF
    Mol Microbiol; 1989 Feb; 3(2):215-20. PubMed ID: 2548059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease.
    Flower TR; Chesnokova LS; Froelich CA; Dixon C; Witt SN
    J Mol Biol; 2005 Sep; 351(5):1081-100. PubMed ID: 16051265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.