BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2451343)

  • 1. The inter-relationship between anchorage independence and tumorigenicity in early cultures of oral keratinocytes.
    Luker J; De Gay L; Crane IJ; Stone A; Scully C; Prime SS
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1988; 54(4):246-51. PubMed ID: 2451343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of 3T3 fibroblasts on the expression of anchorage independence and cornification of oral keratinocytes.
    Luker J; Crane IJ; Scully C; Prime SS
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1989; 57(1):19-26. PubMed ID: 2472034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumour progression in experimental oral carcinogenesis is associated with changes in EGF and TGF-beta receptor expression and altered responses to these growth factors.
    Game SM; Stone A; Scully C; Prime SS
    Carcinogenesis; 1990 Jun; 11(6):965-73. PubMed ID: 2161297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of anchorage independence by malignant rat oral keratinocytes after colony formation in vitro and tumour formation in vivo.
    Luker J; Crane IJ; Scully C; Prime SS
    Arch Oral Biol; 1989; 34(11):867-73. PubMed ID: 2610620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of oral keratinocytes in vitro by 4-nitroquinoline N-oxide.
    Crane IJ; Luker J; de Gay L; Rice SQ; Stone A; Scully C; Prime SS
    Carcinogenesis; 1988 Dec; 9(12):2251-6. PubMed ID: 2461265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of malignant rat keratinocytes in culture following the induction of oral squamous cell carcinomas in vivo.
    Crane IJ; Luker J; Stone A; Scully C; Prime SS
    Carcinogenesis; 1986 Oct; 7(10):1723-7. PubMed ID: 2428538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inflammatory cell infiltrate associated with primary and transplanted tumours in an inbred model of oral carcinogenesis.
    Thomas DW; Matthews JB; Patel V; Game SM; Prime SS
    J Oral Pathol Med; 1995 Jan; 24(1):23-31. PubMed ID: 7536846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The behaviour of human oral squamous cell carcinoma in cell culture.
    Prime SS; Nixon SV; Crane IJ; Stone A; Matthews JB; Maitland NJ; Remnant L; Powell SK; Game SM; Scully C
    J Pathol; 1990 Mar; 160(3):259-69. PubMed ID: 1692339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of aneuploidy in experimental oral carcinogenesis.
    Crane IJ; Patel V; Scully C; Prime SS
    Carcinogenesis; 1989 Dec; 10(12):2375-7. PubMed ID: 2512014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The expression of MHC antigens on cultured oral keratinocytes and relationship to malignancy.
    Crane IJ; Rice SQ; Luker J; de Gay L; Scully C; Prime SS
    Br J Exp Pathol; 1988 Oct; 69(5):749-58. PubMed ID: 2461729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative stages of expression of human squamous carcinoma cells and carcinogen transformed keratinocytes.
    Milo GE; Yohn J; Schuller D; Noyes I; Lehman T
    J Invest Dermatol; 1989 Jun; 92(6):848-53. PubMed ID: 2470830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular tumorigenicity in nude mice. Test of associations among loss of cell-surface fibronectin, anchorage independence, and tumor-forming ability.
    Kahn P; Shin SI
    J Cell Biol; 1979 Jul; 82(1):1-16. PubMed ID: 383723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clonal analysis of the stepwise appearance of anchorage independence and tumorigenicity in CAK, a permanent line of mouse cells.
    Thomassen DG; DeMars R
    Cancer Res; 1982 Oct; 42(10):4054-63. PubMed ID: 7105002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of the tumorigenic phenotype with in vitro, but not in vivo, passaging of a novel series of human bronchial epithelial cell lines: possible role of an alpha 5/beta 1-integrin-fibronectin interaction.
    Schiller JH; Bittner G
    Cancer Res; 1995 Dec; 55(24):6215-21. PubMed ID: 8521416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an in vitro model to study carcinogen-induced neoplastic progression of initiated mouse epidermal cells.
    Morgan D; Welty D; Glick A; Greenhalgh D; Hennings H; Yuspa SH
    Cancer Res; 1992 Jun; 52(11):3145-56. PubMed ID: 1375535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocrine production of TGF-alpha and TGF-beta during tumour progression of rat oral keratinocytes.
    Donnelly MJ; Patel V; Yeudall WA; Game SM; Scully C; Prime SS
    Carcinogenesis; 1993 May; 14(5):981-5. PubMed ID: 8504493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation and characterization of cells derived from mouse skin papillomas induced by an initiation-promotion protocol.
    Yuspa SH; Morgan D; Lichti U; Spangler EF; Michael D; Kilkenny A; Hennings H
    Carcinogenesis; 1986 Jun; 7(6):949-58. PubMed ID: 2871947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential appearance of anchorage independence, uncontrolled nuclear division and tumorigenicity in 7,12-dimethylbenz(a)anthracene-exposed rat tracheal epithelial cells.
    Marchok AC; Martin DH
    Cancer Res; 1987 Jul; 47(13):3446-50. PubMed ID: 3107810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of malignant oral rat keratinocytes reflects changes in EGF and TGF-beta receptor expression but not growth factor dependence.
    Game SM; Stone A; Matthews JB; Scully C; Prime SS
    Carcinogenesis; 1991 Mar; 12(3):409-16. PubMed ID: 1849051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in keratin expression during malignant progression of transformed mouse epidermal keratinocytes.
    CaulĂ­n C; Bauluz C; Gandarillas A; Cano A; Quintanilla M
    Exp Cell Res; 1993 Jan; 204(1):11-21. PubMed ID: 7677983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.