BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24513530)

  • 1. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism.
    Moreno-Sánchez R; Marín-Hernández A; Saavedra E; Pardo JP; Ralph SJ; Rodríguez-Enríquez S
    Int J Biochem Cell Biol; 2014 May; 50():10-23. PubMed ID: 24513530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism transition in multi-cellular human tumor spheroids.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Avilés-Salas A; Marín-Hernández A; Carreño-Fuentes L; Maldonado-Lagunas V; Moreno-Sánchez R
    J Cell Physiol; 2008 Jul; 216(1):189-97. PubMed ID: 18264981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy metabolism in tumor cells.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E
    FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to monitor and compare mitochondrial and glycolytic ATP production.
    Patergnani S; Baldassari F; De Marchi E; Karkucinska-Wieckowska A; Wieckowski MR; Pinton P
    Methods Enzymol; 2014; 542():313-32. PubMed ID: 24862273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells?
    Moreno-Sánchez R; Rodríguez-Enríquez S; Saavedra E; Marín-Hernández A; Gallardo-Pérez JC
    Biofactors; 2009; 35(2):209-25. PubMed ID: 19449450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect.
    Moreno-Sánchez R; Robledo-Cadena DX; Pacheco-Velázquez SC; Vargas Navarro JL; Padilla-Flores JA; Rodríguez-Enríquez S
    Arch Biochem Biophys; 2023 May; 739():109559. PubMed ID: 36906097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Follow the ATP: tumor energy production: a perspective.
    Oronsky BT; Oronsky N; Fanger GR; Parker CW; Caroen SZ; Lybeck M; Scicinski JJ
    Anticancer Agents Med Chem; 2014; 14(9):1187-98. PubMed ID: 25102360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. More Than Meets the Eye Regarding Cancer Metabolism.
    Kubicka A; Matczak K; Łabieniec-Watała M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer morphogenesis: role of mitochondrial failure.
    Fosslien E
    Ann Clin Lab Sci; 2008; 38(4):307-29. PubMed ID: 18988924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg effect: 80 years on.
    Potter M; Newport E; Morten KJ
    Biochem Soc Trans; 2016 Oct; 44(5):1499-1505. PubMed ID: 27911732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.
    Schuster S; Boley D; Möller P; Stark H; Kaleta C
    Biochem Soc Trans; 2015 Dec; 43(6):1187-94. PubMed ID: 26614659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria: The ketogenic diet--A metabolism-based therapy.
    Vidali S; Aminzadeh S; Lambert B; Rutherford T; Sperl W; Kofler B; Feichtinger RG
    Int J Biochem Cell Biol; 2015 Jun; 63():55-9. PubMed ID: 25666556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming.
    de Bari L; Atlante A
    Cell Mol Life Sci; 2018 Aug; 75(15):2763-2776. PubMed ID: 29728715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Warburg effect or reverse Warburg effect? A review of cancer metabolism.
    Xu XD; Shao SX; Jiang HP; Cao YW; Wang YH; Yang XC; Wang YL; Wang XS; Niu HT
    Oncol Res Treat; 2015; 38(3):117-22. PubMed ID: 25792083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.
    Levine AJ; Puzio-Kuter AM
    Science; 2010 Dec; 330(6009):1340-4. PubMed ID: 21127244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects?
    Dell' Antone P
    Med Hypotheses; 2012 Sep; 79(3):388-92. PubMed ID: 22770870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.