BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24513531)

  • 1. On the structural organization of the intracellular domains of CFTR.
    Moran O
    Int J Biochem Cell Biol; 2014 Jul; 52():7-14. PubMed ID: 24513531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies.
    Odolczyk N; Zielenkiewicz P
    Int J Biochem Cell Biol; 2014 Jul; 52():39-46. PubMed ID: 24735712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR structure and cystic fibrosis.
    Cant N; Pollock N; Ford RC
    Int J Biochem Cell Biol; 2014 Jul; 52():15-25. PubMed ID: 24534272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.
    Zhang Z; Chen J
    Cell; 2016 Dec; 167(6):1586-1597.e9. PubMed ID: 27912062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation.
    Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE
    Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functions of the cystic fibrosis transmembrane conductance regulator protein.
    Frizzell RA
    Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 2):S54-8. PubMed ID: 7533606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting cystic fibrosis transmembrane conductance regulator structure and function.
    Hanrahan JW; Wioland MA
    Proc Am Thorac Soc; 2004; 1(1):17-21. PubMed ID: 16113406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the mechanisms underlying CFTR channel activity, the molecular basis for cystic fibrosis and strategies for therapy.
    Kim Chiaw P; Eckford PD; Bear CE
    Essays Biochem; 2011 Sep; 50(1):233-48. PubMed ID: 21967060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator (CFTR) nucleotide-binding domain 1 (NBD-1) and CFTR truncated within NBD-1 target to the epithelial plasma membrane and increase anion permeability.
    Clancy JP; Hong JS; Bebök Z; King SA; Demolombe S; Bedwell DM; Sorscher EJ
    Biochemistry; 1998 Oct; 37(43):15222-30. PubMed ID: 9790686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability.
    Meng X; Clews J; Kargas V; Wang X; Ford RC
    Cell Mol Life Sci; 2017 Jan; 74(1):23-38. PubMed ID: 27734094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural basis of cystic fibrosis.
    Meng X; Clews J; Martin ER; Ciuta AD; Ford RC
    Biochem Soc Trans; 2018 Oct; 46(5):1093-1098. PubMed ID: 30154098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance.
    El Khouri E; Touré A
    Int J Biochem Cell Biol; 2014 Jul; 52():58-67. PubMed ID: 24530837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface.
    Chin S; Yang D; Miles AJ; Eckford PDW; Molinski S; Wallace BA; Bear CE
    J Biol Chem; 2017 Feb; 292(5):1988-1999. PubMed ID: 28003367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional architecture of the CFTR chloride channel.
    Linsdell P
    Mol Membr Biol; 2014 Feb; 31(1):1-16. PubMed ID: 24341413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoskeleton and CFTR.
    Edelman A
    Int J Biochem Cell Biol; 2014 Jul; 52():68-72. PubMed ID: 24685681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating.
    He L; Aleksandrov AA; Serohijos AW; Hegedus T; Aleksandrov LA; Cui L; Dokholyan NV; Riordan JR
    J Biol Chem; 2008 Sep; 283(39):26383-90. PubMed ID: 18658148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.