These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 24513701)

  • 1. Estimating hydroxyl radical photochemical formation rates in natural waters during long-term laboratory irradiation experiments.
    Sun L; Chen H; Abdulla HA; Mopper K
    Environ Sci Process Impacts; 2014 Apr; 16(4):757-63. PubMed ID: 24513701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters.
    Page SE; Logan JR; Cory RM; McNeill K
    Environ Sci Process Impacts; 2014 Apr; 16(4):807-22. PubMed ID: 24556650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA.
    Timko SA; Romera-Castillo C; Jaffé R; Cooper WJ
    Environ Sci Process Impacts; 2014 Apr; 16(4):866-78. PubMed ID: 24549208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the occurrence of the dibromide radical (Br₂⁻•) in natural waters: measures of triplet-sensitised formation, reactivity, and modelling.
    De Laurentiis E; Minella M; Maurino V; Minero C; Mailhot G; Sarakha M; Brigante M; Vione D
    Sci Total Environ; 2012 Nov; 439():299-306. PubMed ID: 23085471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions.
    Xu H; Cooper WJ; Jung J; Song W
    Water Res; 2011 Jan; 45(2):632-8. PubMed ID: 20813393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of the hydroxyl radical photochemical sources on the rivastigmine drug transformation in mimic and natural waters.
    Passananti M; Temussi F; Iesce MR; Mailhot G; Brigante M
    Water Res; 2013 Sep; 47(14):5422-30. PubMed ID: 23863380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced oxidation processes: mechanistic aspects.
    von Sonntag C
    Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terephthalate as a probe for photochemically generated hydroxyl radical.
    Page SE; Arnold WA; McNeill K
    J Environ Monit; 2010 Sep; 12(9):1658-65. PubMed ID: 20694272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U
    Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark formation of hydroxyl radical in Arctic soil and surface waters.
    Page SE; Kling GW; Sander M; Harrold KH; Logan JR; McNeill K; Cory RM
    Environ Sci Technol; 2013 Nov; 47(22):12860-7. PubMed ID: 24111975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halogen radicals contribute to photooxidation in coastal and estuarine waters.
    Parker KM; Mitch WA
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5868-73. PubMed ID: 27162335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters.
    Yang Y; Pignatello JJ
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29027977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the photochemical formation of hydroxyl radical from dissolved organic matter.
    McKay G; Rosario-Ortiz FL
    Environ Sci Technol; 2015 Apr; 49(7):4147-54. PubMed ID: 25719947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model approach to assess the long-term trends of indirect photochemistry in lake water. The case of Lake Maggiore (NW Italy).
    Minella M; Rogora M; Vione D; Maurino V; Minero C
    Sci Total Environ; 2011 Aug; 409(18):3463-71. PubMed ID: 21700321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples.
    Vione D; Falletti G; Maurino V; Minero C; Pelizzetti E; Malandrino M; Ajassa R; Olariu RI; Arsene C
    Environ Sci Technol; 2006 Jun; 40(12):3775-81. PubMed ID: 16830541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions.
    Page SE; Arnold WA; McNeill K
    Environ Sci Technol; 2011 Apr; 45(7):2818-25. PubMed ID: 21375262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples.
    Nakatani N; Ueda M; Shindo H; Takeda K; Sakugawa H
    Anal Sci; 2007 Sep; 23(9):1137-42. PubMed ID: 17878592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid.
    Southworth BA; Voelker BM
    Environ Sci Technol; 2003 Mar; 37(6):1130-6. PubMed ID: 12680665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling phototransformation reactions in surface water bodies: 2,4-dichloro-6-nitrophenol as a case study.
    Maddigapu PR; Minella M; Vione D; Maurino V; Minero C
    Environ Sci Technol; 2011 Jan; 45(1):209-14. PubMed ID: 20822131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect photolysis promoted by natural and engineered wetland water constituents: processes leading to alachlor degradation.
    Miller PL; Chin YP
    Environ Sci Technol; 2005 Jun; 39(12):4454-62. PubMed ID: 16047781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.