BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24513861)

  • 1. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae.
    Fossati E; Ekins A; Narcross L; Zhu Y; Falgueyret JP; Beaudoin GA; Facchini PJ; Martin VJ
    Nat Commun; 2014; 5():3283. PubMed ID: 24513861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.
    Narcross L; Bourgeois L; Fossati E; Burton E; Martin VJ
    ACS Synth Biol; 2016 Dec; 5(12):1505-1518. PubMed ID: 27442619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis.
    Hagel JM; Beaudoin GA; Fossati E; Ekins A; Martin VJ; Facchini PJ
    J Biol Chem; 2012 Dec; 287(51):42972-83. PubMed ID: 23118227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast.
    Morris JS; Dastmalchi M; Li J; Chang L; Chen X; Hagel JM; Facchini PJ
    Methods Enzymol; 2016; 575():143-78. PubMed ID: 27417928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.
    Li Y; Smolke CD
    Nat Commun; 2016 Jul; 7():12137. PubMed ID: 27378283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.
    Pyne ME; Narcross L; Fossati E; Bourgeois L; Burton E; Gold ND; Martin VJ
    Methods Enzymol; 2016; 575():195-224. PubMed ID: 27417930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A rhizogenes LBA 9402.
    Le Flem-Bonhomme V; Laurain-Mattar D; Fliniaux MA
    Planta; 2004 Mar; 218(5):890-3. PubMed ID: 14740216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis.
    Beaudoin GA; Facchini PJ
    Biochem Biophys Res Commun; 2013 Feb; 431(3):597-603. PubMed ID: 23313486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoquinoline alkaloid production by transformed cultures of Papaver somniferum.
    Yoshimatsu K; Shimomura K
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2001; (119):52-6. PubMed ID: 11915285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    Nat Chem Biol; 2008 Sep; 4(9):564-73. PubMed ID: 18690217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of yeast-based production of medicinal protoberberine alkaloids.
    Galanie S; Smolke CD
    Microb Cell Fact; 2015 Sep; 14():144. PubMed ID: 26376732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose.
    DeLoache WC; Russ ZN; Narcross L; Gonzales AM; Martin VJ; Dueber JE
    Nat Chem Biol; 2015 Jul; 11(7):465-71. PubMed ID: 25984720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants.
    Facchini PJ; De Luca V
    Plant J; 2008 May; 54(4):763-84. PubMed ID: 18476877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Factories for the Production of Benzylisoquinoline Alkaloids.
    Narcross L; Fossati E; Bourgeois L; Dueber JE; Martin VJJ
    Trends Biotechnol; 2016 Mar; 34(3):228-241. PubMed ID: 26775900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of morphine biosynthesis in opium poppy.
    Ziegler J; Facchini PJ; Geissler R; Schmidt J; Ammer C; Kramell R; Voigtländer S; Gesell A; Pienkny S; Brandt W
    Phytochemistry; 2009; 70(15-16):1696-707. PubMed ID: 19665152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics.
    Zulak KG; Khan MF; Alcantara J; Schriemer DC; Facchini PJ
    Mol Cell Proteomics; 2009 Jan; 8(1):86-98. PubMed ID: 18682378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world.
    Hagel JM; Facchini PJ
    Plant Cell Physiol; 2013 May; 54(5):647-72. PubMed ID: 23385146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microbial biomanufacturing platform for natural and semisynthetic opioids.
    Thodey K; Galanie S; Smolke CD
    Nat Chem Biol; 2014 Oct; 10(10):837-44. PubMed ID: 25151135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of plant benzylisoquinoline alkaloids.
    Minami H; Kim JS; Ikezawa N; Takemura T; Katayama T; Kumagai H; Sato F
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7393-8. PubMed ID: 18492807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green Routes for the Production of Enantiopure Benzylisoquinoline Alkaloids.
    Ghirga F; Bonamore A; Calisti L; D'Acquarica I; Mori M; Botta B; Boffi A; Macone A
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29156609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.