These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering. Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352 [TBL] [Abstract][Full Text] [Related]
7. Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. Zhang Z; Yu Q; Li H; Mustapha A; Lin M J Food Sci; 2015 Feb; 80(2):N450-8. PubMed ID: 25604440 [TBL] [Abstract][Full Text] [Related]
8. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance. Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686 [TBL] [Abstract][Full Text] [Related]
9. Reliable plasmonic substrates for bioanalytical SERS applications easily prepared by convective assembly of gold nanocolloids. Farcau C; Potara M; Leordean C; Boca S; Astilean S Analyst; 2013 Jan; 138(2):546-52. PubMed ID: 23171872 [TBL] [Abstract][Full Text] [Related]
11. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Sivashanmugan K; Liao JD; Liu BH; Yao CK Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168 [TBL] [Abstract][Full Text] [Related]
12. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. Alsammarraie FK; Lin M J Agric Food Chem; 2017 Jan; 65(3):666-674. PubMed ID: 28080039 [TBL] [Abstract][Full Text] [Related]
13. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. Stewart AF; Lee A; Ahmed A; Ip S; Kumacheva E; Walker GC ACS Nano; 2014 Jun; 8(6):5462-7. PubMed ID: 24826839 [TBL] [Abstract][Full Text] [Related]
14. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes. Zhang K; Ji J; Li Y; Liu B Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488 [TBL] [Abstract][Full Text] [Related]
15. Chemically bound gold nanoparticle arrays on silicon: assembly, properties and SERS study of protein interactions. Kaminska A; Inya-Agha O; Forster RJ; Keyes TE Phys Chem Chem Phys; 2008 Jul; 10(28):4172-80. PubMed ID: 18612522 [TBL] [Abstract][Full Text] [Related]
16. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Orendorff CJ; Gearheart L; Jana NR; Murphy CJ Phys Chem Chem Phys; 2006 Jan; 8(1):165-70. PubMed ID: 16482257 [TBL] [Abstract][Full Text] [Related]
17. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection. Deng Y; Idso MN; Galvan DD; Yu Q Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
20. Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Shao L; Ruan Q; Jiang R; Wang J Small; 2014 Feb; 10(4):802-11. PubMed ID: 24123980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]