These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24514211)

  • 1. Investigation of nanostructured hybrid organic/semiconductor quantum dots in thin film and spatial distribution of the emission.
    Lin HJ; Flory F; Le-Rouzo J; Lee CC
    Appl Opt; 2014 Feb; 53(4):A169-74. PubMed ID: 24514211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminophore Configuration and Concentration-Dependent Optoelectronic Characteristics of a Quantum Dot-Embedded DNA Hybrid Thin film.
    Arasu V; Dugasani SR; Kesama MR; Chung HK; Park SH
    Sci Rep; 2017 Sep; 7(1):11567. PubMed ID: 28912561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping MAPbBr
    Baronnier J; Houel J; Dujardin C; Kulzer F; Mahler B
    Nanoscale; 2022 Apr; 14(15):5769-5781. PubMed ID: 35352077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films.
    Wang X; Du Y; Ding S; Wang Q; Xiong G; Xie M; Shen X; Pang D
    J Phys Chem B; 2006 Feb; 110(4):1566-70. PubMed ID: 16471716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Electrochemical Control over Photoexcited Luminescence of Core/Shell CdSe/ZnS Quantum Dot Film.
    Li B; Lu M; Liu W; Zhu X; He X; Yang Y; Yang Q
    Nanoscale Res Lett; 2017 Dec; 12(1):626. PubMed ID: 29247304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach.
    Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA
    Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots.
    Cho IW; Ryu MY
    Sci Rep; 2019 Dec; 9(1):18433. PubMed ID: 31804551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling single quantum dots to plasmonic nanocones: optical properties.
    Meixner AJ; Jäger R; Jäger S; Bräuer A; Scherzinger K; Fulmes J; Krockhaus Sz; Gollmer DA; Kern DP; Fleischer M
    Faraday Discuss; 2015; 184():321-37. PubMed ID: 26404008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid light-emitting diodes from anthracene-contained polymer and CdSe/ZnS core/shell quantum dots.
    Tu ML; Su YK; Chen RT
    Nanoscale Res Lett; 2014; 9(1):611. PubMed ID: 25419194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanics of CdSe quantum dot-polymer nanocomposite films.
    McCumiskey EJ; Chandrasekhar N; Taylor CR
    Nanotechnology; 2010 Jun; 21(22):225703. PubMed ID: 20453287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sol-gel SiO2 film contained Au/SiO2/quantum dot core/shell/shell nanostructures with plasmonic enhanced photoluminescence.
    Yang P; Zhang L; Wang Y
    J Nanosci Nanotechnol; 2012 Dec; 12(12):8999-9002. PubMed ID: 23447950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Core-Shell Quantum Dots-3D WS
    Tang SY; Yang CC; Su TY; Yang TY; Wu SC; Hsu YC; Chen YZ; Lin TN; Shen JL; Lin HN; Chiu PW; Kuo HC; Chueh YL
    ACS Nano; 2020 Oct; 14(10):12668-12678. PubMed ID: 32813498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform thin films of CdSe and CdSe(ZnS) core(shell) quantum dots by sol-gel assembly: enabling photoelectrochemical characterization and electronic applications.
    Korala L; Wang Z; Liu Y; Maldonado S; Brock SL
    ACS Nano; 2013 Feb; 7(2):1215-23. PubMed ID: 23350924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core-shell quantum dots.
    Chen J; Žídek K; Abdellah M; Al-Marri MJ; Zheng K; Pullerits T
    J Phys Condens Matter; 2016 Jun; 28(25):254001. PubMed ID: 27167726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroluminescence from single monolayers of nanocrystals in molecular organic devices.
    Coe S; Woo WK; Bawendi M; Bulović V
    Nature; 2002 Dec 19-26; 420(6917):800-3. PubMed ID: 12490945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices.
    Shi Z; Liu C; Lv W; Shen H; Wang D; Chen L; Li LS; Jin J
    Nanoscale; 2012 Aug; 4(15):4515-21. PubMed ID: 22695781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative experiments of graphene covalently and physically binding CdSe quantum dots to enhance the electron transport in flexible photovoltaic devices.
    Jung MH; Chu MJ
    Nanoscale; 2014 Aug; 6(15):9241-9. PubMed ID: 24980616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices.
    Panzer MJ; Aidala KE; Bulović V
    Nano Rev; 2012; 3():. PubMed ID: 22496953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.