These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 24514274)
1. High-speed quasi-balanced detection OFDM in visible light communication. Wang Y; Chi N; Wang Y; Li R; Huang X; Yang C; Zhang Z Opt Express; 2013 Nov; 21(23):27558-64. PubMed ID: 24514274 [TBL] [Abstract][Full Text] [Related]
2. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission. Wang Q; Qian C; Guo X; Wang Z; Cunningham DG; White IH Opt Express; 2015 May; 23(9):12382-93. PubMed ID: 25969323 [TBL] [Abstract][Full Text] [Related]
3. Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. Wang Y; Wang Y; Chi N; Yu J; Shang H Opt Express; 2013 Jan; 21(1):1203-8. PubMed ID: 23389012 [TBL] [Abstract][Full Text] [Related]
4. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Wang Y; Huang X; Tao L; Shi J; Chi N Opt Express; 2015 May; 23(10):13626-33. PubMed ID: 26074612 [TBL] [Abstract][Full Text] [Related]
5. Orthogonal Frequency Division Multiplexing Techniques Comparison for Underwater Optical Wireless Communication Systems. Lian J; Gao Y; Wu P; Lian D Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621190 [TBL] [Abstract][Full Text] [Related]
6. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems. Li J; Huang Z; Liu X; Ji Y Opt Express; 2015 Jan; 23(1):611-9. PubMed ID: 25835706 [TBL] [Abstract][Full Text] [Related]
7. Time domain reshuffling for OFDM based indoor visible light communication systems. You X; Chen J; Yu C; Zheng H Opt Express; 2017 May; 25(10):11606-11621. PubMed ID: 28788724 [TBL] [Abstract][Full Text] [Related]
9. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Abd Elkarim M; Elsherbini MM; AbdelKader HM; Aly MH Appl Opt; 2020 Aug; 59(24):7343-7351. PubMed ID: 32902501 [TBL] [Abstract][Full Text] [Related]
10. Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance. Yeh CH; Chow CW; Chen HY; Chen J; Liu YL Opt Express; 2014 Apr; 22(8):9783-8. PubMed ID: 24787863 [TBL] [Abstract][Full Text] [Related]
13. Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser. Li F; Yu J; Fang Y; Dong Z; Li X; Chen L Opt Express; 2014 Apr; 22(7):8742-8. PubMed ID: 24718244 [TBL] [Abstract][Full Text] [Related]
14. Low complexity OFDM VLC system enabled by spatial summing modulation. Yang Y; Chen C; Du P; Deng X; Luo J; Zhong WD; Chen L Opt Express; 2019 Oct; 27(21):30788-30795. PubMed ID: 31684321 [TBL] [Abstract][Full Text] [Related]
15. 450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. Chi YC; Hsieh DH; Tsai CT; Chen HY; Kuo HC; Lin GR Opt Express; 2015 May; 23(10):13051-9. PubMed ID: 26074558 [TBL] [Abstract][Full Text] [Related]
16. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications. Bai J; Li Y; Yi Y; Cheng W; Du H Opt Express; 2017 Oct; 25(20):24630-24638. PubMed ID: 29041408 [TBL] [Abstract][Full Text] [Related]
17. Layered antisymmetry-constructed clipped optical OFDM for low-complexity VLC systems. Bai R; Hranilovic S Opt Express; 2021 Mar; 29(7):10613-10630. PubMed ID: 33820193 [TBL] [Abstract][Full Text] [Related]
18. Compressive sensing-based channel bandwidth improvement in optical wireless orthogonal frequency division multiplexing link using visible light emitting diode. Won YY; Yoon SM Opt Express; 2014 Aug; 22(17):19990-9. PubMed ID: 25321208 [TBL] [Abstract][Full Text] [Related]
19. 0.52-11.86 Gbit/s OFDM modulation for power-sharing VLC transmission by using VCSEL laser. Yeh CH; Lu IC Opt Express; 2016 Sep; 24(18):21113-8. PubMed ID: 27607714 [TBL] [Abstract][Full Text] [Related]