These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24514297)

  • 1. Importance of the microscopic effects on the linewidth enhancement factor of quantum cascade lasers.
    Liu T; Lee KE; Wang QJ
    Opt Express; 2013 Nov; 21(23):27804-15. PubMed ID: 24514297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.
    Wang Y; Belyanin A
    Opt Express; 2015 Feb; 23(4):4173-85. PubMed ID: 25836455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation.
    Hu Q; Williams BS; Kumar S; Callebaut H; Reno JL
    Philos Trans A Math Phys Eng Sci; 2004 Feb; 362(1815):233-47; discussion 247-9. PubMed ID: 15306517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral behavior of a terahertz quantum-cascade laser.
    Hensley JM; Montoya J; Allen MG; Xu J; Mahler L; Tredicucci A; Beere HE; Ritchie DA
    Opt Express; 2009 Oct; 17(22):20476-83. PubMed ID: 19997276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-IR optical amplification and detection using quantum cascade lasers.
    Guo D; Chen X; Cheng L; Belyanin A; Choa FS
    Opt Express; 2013 Dec; 21(25):30545-52. PubMed ID: 24514631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant absorption induced fast melting studied with mid-IR QCLs.
    Lu J; Lv Y; Ji Y; Tang X; Qi Z; Li L
    Rev Sci Instrum; 2017 Feb; 88(2):023108. PubMed ID: 28249478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.
    Yamanishi M
    Opt Express; 2012 Dec; 20(27):28465-78. PubMed ID: 23263082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers.
    Han YJ; Li LH; Zhu J; Valavanis A; Freeman JR; Chen L; Rosamond M; Dean P; Davies AG; Linfield EH
    Opt Express; 2018 Feb; 26(4):3814-3827. PubMed ID: 29475360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz ambipolar dual-wavelength quantum cascade laser.
    Lever L; Hinchcliffe NM; Khanna SP; Dean P; Ikonic Z; Evans CA; Davies AG; Harrison P; Linfield EH; Kelsall RW
    Opt Express; 2009 Oct; 17(22):19926-32. PubMed ID: 19997216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Pulse Generation from Quantum Cascade Lasers.
    Wang F; Qi X; Chen Z; Razeghi M; Dhillon S
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback.
    Wienold M; Röben B; Schrottke L; Sharma R; Tahraoui A; Biermann K; Grahn HT
    Opt Express; 2014 Feb; 22(3):3334-48. PubMed ID: 24663624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser feedback interferometry in multi-mode terahertz quantum cascade lasers.
    Qi X; Agnew G; Taimre T; Han S; Lim YL; Bertling K; Demić A; Dean P; Indjin D; Rakić AD
    Opt Express; 2020 May; 28(10):14246-14262. PubMed ID: 32403467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of resonant mode characteristics for terahertz quantum cascade lasers with distributed feedback utilizing machine learning.
    Tang P; Chi X; Chen B; Wu C
    Opt Express; 2021 May; 29(10):15309-15326. PubMed ID: 33985233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling.
    Fathololoumi S; Dupont E; Chan CW; Wasilewski ZR; Laframboise SR; Ban D; Mátyás A; Jirauschek C; Hu Q; Liu HC
    Opt Express; 2012 Feb; 20(4):3866-76. PubMed ID: 22418143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q resonant cavities for terahertz quantum cascade lasers.
    Campa A; Consolino L; Ravaro M; Mazzotti D; Vitiello MS; Bartalini S; De Natale P
    Opt Express; 2015 Feb; 23(3):3751-61. PubMed ID: 25836227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic phase-locking, noise, and modulation properties of optically mutual-injected terahertz quantum cascade lasers.
    Li Y; Yang N; Xie Y; Chu W; Zhang W; Duan S; Wang J
    Opt Express; 2019 Feb; 27(3):3146-3160. PubMed ID: 30732340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo study of intrinsic linewidths in terahertz quantum cascade lasers.
    Jirauschek C
    Opt Express; 2010 Dec; 18(25):25922-7. PubMed ID: 21164938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
    Vijayraghavan K; Jiang Y; Jang M; Jiang A; Choutagunta K; Vizbaras A; Demmerle F; Boehm G; Amann MC; Belkin MA
    Nat Commun; 2013; 4():2021. PubMed ID: 23771177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant two-photon terahertz quantum cascade laser.
    Talukder MA; Dean P; Linfield EH; Davies AG
    Opt Express; 2022 Aug; 30(18):31785-31794. PubMed ID: 36242253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers.
    Wang XG; Grillot F; Wang C
    Opt Express; 2018 Feb; 26(3):2325-2334. PubMed ID: 29401772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.