These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24514320)

  • 1. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths.
    Deán-Ben XL; Razansky D
    Opt Express; 2013 Nov; 21(23):28062-71. PubMed ID: 24514320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography.
    Dean-Ben XL; Ozbek A; Razansky D
    IEEE Trans Med Imaging; 2013 Nov; 32(11):2050-5. PubMed ID: 23846468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional optoacoustic tomography at video rate.
    Buehler A; Deán-Ben XL; Claussen J; Ntziachristos V; Razansky D
    Opt Express; 2012 Sep; 20(20):22712-9. PubMed ID: 23037421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals.
    Gateau J; Caballero MA; Dima A; Ntziachristos V
    Med Phys; 2013 Jan; 40(1):013302. PubMed ID: 23298121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sparse hand-held probe for optoacoustic ultrasound volumetric imaging: an experimental proof-of-concept study.
    Azizian Kalkhoran M; Varray F; Stuart Savoia A; Vray D
    Opt Lett; 2020 Feb; 45(4):885-888. PubMed ID: 32058496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoacoustic imaging of subcutaneous microvasculature with a class one laser.
    Bost W; Lemor R; Fournelle M
    IEEE Trans Med Imaging; 2014 Sep; 33(9):1900-4. PubMed ID: 24876111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-visual laser-diode-based photoacoustic imaging.
    Zeng L; Liu G; Yang D; Ji X
    Opt Express; 2012 Jan; 20(2):1237-46. PubMed ID: 22274468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast.
    Deán-Ben XL; Fehm TF; Gostic M; Razansky D
    J Biophotonics; 2016 Mar; 9(3):253-9. PubMed ID: 25966021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optoacoustic image formation approaches-a clinical perspective.
    Deán-Ben XL; Razansky D
    Phys Med Biol; 2019 Sep; 64(18):18TR01. PubMed ID: 31342913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform light delivery in volumetric optoacoustic tomography.
    Mc Larney B; Rebling J; Chen Z; Deán-Ben XL; Gottschalk S; Razansky D
    J Biophotonics; 2019 Jun; 12(6):e201800387. PubMed ID: 30701679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors.
    Araque Caballero MA; Gateau J; Dean-Ben XL; Ntziachristos V
    IEEE Trans Med Imaging; 2014 Feb; 33(2):433-43. PubMed ID: 24144658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial Compounding of Volumetric Data Enables Freehand Optoacoustic Angiography of Large-Scale Vascular Networks.
    Knauer N; Dean-Ben XL; Razansky D
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1160-1169. PubMed ID: 31581078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo.
    Zhou Y; Li G; Zhu L; Li C; Cornelius LA; Wang LV
    J Biophotonics; 2015 Nov; 8(11-12):961-967. PubMed ID: 25676898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound.
    Landa FJO; Penacoba SR; de Espinosa FM; Razansky D; Deán-Ben XL
    Ultrasonics; 2019 Apr; 94():117-123. PubMed ID: 30580815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography.
    Deán-Ben XL; Buehler A; Ntziachristos V; Razansky D
    IEEE Trans Med Imaging; 2012 Oct; 31(10):1922-8. PubMed ID: 23033065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of small variations of speed of sound in optoacoustic tomographic imaging.
    Deán-Ben XL; Ntziachristos V; Razansky D
    Med Phys; 2014 Jul; 41(7):073301. PubMed ID: 24989414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-registered pulse-echo/photoacoustic transvaginal probe for real time imaging of ovarian tissue.
    Kumavor PD; Alqasemi U; Tavakoli B; Li H; Yang Y; Sun X; Warych E; Zhu Q
    J Biophotonics; 2013 Jun; 6(6-7):475-84. PubMed ID: 23450770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient 3-D Model-Based Reconstruction Scheme for Arbitrary Optoacoustic Acquisition Geometries.
    Ding L; Dean-Ben XL; Razansky D
    IEEE Trans Med Imaging; 2017 Sep; 36(9):1858-1867. PubMed ID: 28504935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique.
    Turner J; Estrada H; Kneipp M; Razansky D
    Opt Lett; 2014 Jun; 39(12):3390-3. PubMed ID: 24978493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional optoacoustic imaging of moving objects using microsecond-delay acquisition of multispectral three-dimensional tomographic data.
    Deán-Ben XL; Bay E; Razansky D
    Sci Rep; 2014 Jul; 4():5878. PubMed ID: 25073504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.