These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24514389)

  • 1. Correlation-based smoothing model for optical polishing.
    Shu Y; Kim DW; Martin HM; Burge JH
    Opt Express; 2013 Nov; 21(23):28771-82. PubMed ID: 24514389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric smoothing model for visco-elastic polishing tools.
    Kim DW; Park WH; An HK; Burge JH
    Opt Express; 2010 Oct; 18(21):22515-26. PubMed ID: 20941150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental comparisons of the smoothing effects for different multi-layer polishing tools during computer-controlled optical surfacing.
    Li X; Wei C; Zhang S; Xu W; Shao J
    Appl Opt; 2019 Jun; 58(16):4406-4413. PubMed ID: 31251250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigid conformal polishing tool using non-linear visco-elastic effect.
    Kim DW; Burge JH
    Opt Express; 2010 Feb; 18(3):2242-57. PubMed ID: 20174053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid fabrication strategy for Ø1.5  m off-axis parabolic parts using computer-controlled optical surfacing.
    Hu H; Qi E; Luo X; Zhang X; Xue D
    Appl Opt; 2018 Dec; 57(34):F37-F43. PubMed ID: 30645273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors.
    Nie X; Li S; Shi F; Hu H
    Appl Opt; 2014 Feb; 53(6):1020-7. PubMed ID: 24663296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smoothing process of conformal vibration polishing for mid-spatial frequency errors: characteristics research and guiding prediction.
    Liu SW; Wang HX; Zhang QH; Hou J; Chen XH; Xu Q; Wang C
    Appl Opt; 2021 May; 60(13):3925-3935. PubMed ID: 33983331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network based surface shape modeling of stressed lap optical polishing.
    Chen MY; Feng YT; Wan YJ; Li Y; Fan B
    Appl Opt; 2010 Mar; 49(8):1350-4. PubMed ID: 20220891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothing tool design and performance during subaperture glass polishing.
    Suratwala T; Tham G; Steele R; Wong L; Menapace J; Ray N; Bauman B
    Appl Opt; 2023 Mar; 62(8):2061-2072. PubMed ID: 37133094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of smoothing during computer-controlled optical polishing.
    Jones RA
    Appl Opt; 1995 Mar; 34(7):1162-9. PubMed ID: 21037645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High Efficiency and Precision Smoothing Polishing Method for NiP Coating of Metal Mirror.
    Xu C; Peng X; Liu J; Hu H; Lai T; Yang Q; Xiong Y
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the smoothing characteristics and shape-retaining ability of conformal vibration polishing and suppression strategy for full-spatial frequency errors of optics.
    Liu S; Wang H; Hou J; Zhang Q; Chen X; Zhong B; Zhang M
    Appl Opt; 2022 Jun; 61(17):5019-5030. PubMed ID: 36256179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformal smoothing of mid-spatial frequency surface error for nano-accuracy Continuous Phase Plates (CPP).
    Song C; Zhang W; Shi F; Lin Z; Nie X
    Sci Rep; 2020 Feb; 10(1):2579. PubMed ID: 32054930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation verification and surface improvement of active stressed lap for 4  m-class primary mirror fabrication.
    Zhao H; Li X; Fan B; Zeng Z
    Appl Opt; 2015 Apr; 54(10):2658-64. PubMed ID: 25967173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-tool multiplexing model of parallel computer controlled optical surfacing.
    Ke X; Wang T; Choi H; Pullen W; Huang L; Idir M; Kim DW
    Opt Lett; 2020 Dec; 45(23):6426-6429. PubMed ID: 33258828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of the glazing state of the pitch polishing lap by an image texture analysis method in full-aperture continuous polishing.
    Liao D; Xie R; Zhao S; Xu Q
    Appl Opt; 2023 Jun; 62(17):4551-4556. PubMed ID: 37707151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polishing study using Teflon and pitch laps to produce flat and supersmooth surfaces.
    Leistner AJ; Thwaite EG; Lesha F; Bennett JM
    Appl Opt; 1992 Apr; 31(10):1472-82. PubMed ID: 20720780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope.
    Li H; Walker D; Yu G; Zhang W
    Appl Opt; 2013 Aug; 52(23):5781-7. PubMed ID: 23938432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.