These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 24514394)
1. Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures. Lee KJ; Wu JW; Kim K Opt Express; 2013 Nov; 21(23):28817-23. PubMed ID: 24514394 [TBL] [Abstract][Full Text] [Related]
2. Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons. Afinogenov BI; Bessonov VO; Fedyanin AA Opt Lett; 2014 Dec; 39(24):6895-8. PubMed ID: 25503024 [TBL] [Abstract][Full Text] [Related]
4. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method. Li JJ; Li ZY; Zhang DZ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056606. PubMed ID: 17677185 [TBL] [Abstract][Full Text] [Related]
5. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials. Zhou F; Liu Y; Li ZY; Xia Y Opt Express; 2010 Jun; 18(13):13337-44. PubMed ID: 20588463 [TBL] [Abstract][Full Text] [Related]
6. An Optical Fiber Refractive Index Sensor Based on the Hybrid Mode of Tamm and Surface Plasmon Polaritons. Zhang X; Zhu XS; Shi YW Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970804 [TBL] [Abstract][Full Text] [Related]
7. Efficient numerical method for analyzing optical bistability in photonic crystal microcavities. Yuan L; Lu YY Opt Express; 2013 May; 21(10):11952-64. PubMed ID: 23736417 [TBL] [Abstract][Full Text] [Related]
8. All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures. Mingaleev SF; Miroshnichenko AE; Kivshar YS; Busch K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046603. PubMed ID: 17155188 [TBL] [Abstract][Full Text] [Related]
9. Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film. He C; Sun XC; Zhang Z; Yuan CS; Lu MH; Chen YF; Sun C Opt Express; 2013 Nov; 21(23):28933-40. PubMed ID: 24514407 [TBL] [Abstract][Full Text] [Related]
10. Strong influence of nonlinearity and surface plasmon excitations on the lateral shift. Kim K; Phung DK; Rotermund F; Lim H Opt Express; 2008 Sep; 16(20):15506-13. PubMed ID: 18825189 [TBL] [Abstract][Full Text] [Related]
11. Gap surface plasmon polaritons enhanced by a plasmonic lens. Chul Kim H; Cheng X Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167 [TBL] [Abstract][Full Text] [Related]
12. Ultralow threshold optical bistability in metal/randomly layered media structure. Yuan H; Jiang X; Huang F; Sun X Opt Lett; 2016 Feb; 41(4):661-4. PubMed ID: 26872157 [TBL] [Abstract][Full Text] [Related]
13. Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method. Plikusienė I; Bužavaitė-Vertelienė E; Mačiulis V; Valavičius A; Ramanavičienė A; Balevičius Z Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940258 [TBL] [Abstract][Full Text] [Related]
14. Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface. Konopsky VN; Alieva EV Phys Rev Lett; 2006 Dec; 97(25):253904. PubMed ID: 17280356 [TBL] [Abstract][Full Text] [Related]
15. Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures. Rubio-Roy M; Vlasin O; Pascu O; Caicedo JM; Schmidt M; Goñi AR; Tognalli NG; Fainstein A; Roig A; Herranz G Langmuir; 2012 Jun; 28(24):9010-20. PubMed ID: 22594822 [TBL] [Abstract][Full Text] [Related]
16. Surface plasmon polaritons in metal stripes and wires. Krenn JR; Weeber JC Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):739-56. PubMed ID: 15306491 [TBL] [Abstract][Full Text] [Related]