These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 24514394)

  • 41. Quantum cascade surface-emitting photonic crystal laser.
    Colombelli R; Srinivasan K; Troccoli M; Painter O; Gmachl CF; Tennant DM; Sergent AM; Sivco DL; Cho AY; Capasso F
    Science; 2003 Nov; 302(5649):1374-7. PubMed ID: 14593186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study of optical Tamm states based on the phase properties of one-dimensional photonic crystals.
    Chen Z; Han P; Leung CW; Wang Y; Hu M; Chen Y
    Opt Express; 2012 Sep; 20(19):21618-26. PubMed ID: 23037280
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.
    Zhong ZJ; Xu Y; Lan S; Dai QF; Wu LJ
    Opt Express; 2010 Jan; 18(1):79-86. PubMed ID: 20173825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Zero-(n) non-Bragg gap plasmon-polariton modes and omni-reflectance in 1D metamaterial photonic superlattices.
    Agudelo-Arango C; Mejía-Salazar JR; Porras-Montenegro N; Reyes-Gómez E; Oliveira LE
    J Phys Condens Matter; 2011 Jun; 23(21):215003. PubMed ID: 21555838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring the potential of broadband Tamm plasmon resonance for enhanced photodetection.
    Poddar K; Sinha R; Jana B; Chatterjee S; Mukherjee R; Maity AR; Kumar S; Maji PS
    Appl Opt; 2023 Oct; 62(30):8190-8196. PubMed ID: 38038117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational design of one-dimensional nonlinear photonic crystals with material dispersion for efficient second-harmonic generation.
    Kim S; Kim K; Rotermund F; Lim H
    Opt Express; 2009 Oct; 17(21):19075-84. PubMed ID: 20372644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits.
    Merklein M; Kabakova IV; Büttner TF; Choi DY; Luther-Davies B; Madden SJ; Eggleton BJ
    Nat Commun; 2015 Mar; 6():6396. PubMed ID: 25736909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals.
    Tuyen le D; Liu AC; Huang CC; Tsai PC; Lin JH; Wu CW; Chau LK; Yang TS; Minh le Q; Kan HC; Hsu CC
    Opt Express; 2012 Dec; 20(28):29266-75. PubMed ID: 23388752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Near-field diffraction in a two-dimensional V-groove and its role in SERS.
    Mechler M; Kukhlevsky SV; Mechler A; McNaughton D
    Phys Chem Chem Phys; 2011 Dec; 13(46):20772-8. PubMed ID: 21997130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing.
    Renger J; Quidant R; van Hulst N; Palomba S; Novotny L
    Phys Rev Lett; 2009 Dec; 103(26):266802. PubMed ID: 20366329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Real-Time Visual Sensing of Heat or Mass Transfer Processes for Microfluids via Tamm Plasmon Polaritons.
    Hao H; Li L
    ACS Omega; 2022 Jun; 7(23):20376-20382. PubMed ID: 35721982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface plasmon hurdles leading to a strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings.
    Brûlé Y; Demésy G; Gralak B; Popov E
    Opt Express; 2015 Apr; 23(7):9167-82. PubMed ID: 25968751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Huge local electric field enhancement in hybrid plasmonic arrays.
    Zhou F; Liu Y; Cai W
    Opt Lett; 2014 Mar; 39(5):1302-5. PubMed ID: 24690732
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of nonlinear effects using photonic crystals.
    Soljacić M; Joannopoulos JD
    Nat Mater; 2004 Apr; 3(4):211-9. PubMed ID: 15034564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perfect Optical Absorbers by All-Dielectric Photonic Crystal/Metal Heterostructures Due to Optical Tamm State.
    Lu G; Zhang K; Zhao Y; Zhang L; Shang Z; Zhou H; Diao C; Zhou X
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. All-optical bistability and switching near the Dirac point of a 2-D photonic crystal.
    Mattiucci N; Bloemer MJ; D'Aguanno G
    Opt Express; 2013 May; 21(10):11862-8. PubMed ID: 23736408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
    Chen T; Sun J; Li L
    Opt Express; 2012 Aug; 20(18):20043-58. PubMed ID: 23037057
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light.
    Le Perchec J; Quémerais P; Barbara A; López-Ríos T
    Phys Rev Lett; 2008 Feb; 100(6):066408. PubMed ID: 18352499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.