These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24514482)

  • 1. Transmittance enhancement of sapphires with antireflective subwavelength grating patterned UV polymer surface structures by soft lithography.
    Lee SH; Leem JW; Yu JS
    Opt Express; 2013 Dec; 21(24):29298-303. PubMed ID: 24514482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics.
    Leem JW; Yu JS
    Opt Express; 2012 Nov; 20(24):26160-6. PubMed ID: 23187471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly transparent sapphire micro-grating structures with large diffuse light scattering.
    Ko YH; Yu JS
    Opt Express; 2011 Aug; 19(16):15574-83. PubMed ID: 21934920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Sep; 19 Suppl 5():A1155-64. PubMed ID: 21935259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nanoscale conical polymethyl methacrylate (PMMA) sub-wavelength structure with a high aspect ratio realized by a stamping method.
    Kim DS; Kim DH; Jang JH
    Opt Express; 2013 Apr; 21(7):8450-9. PubMed ID: 23571935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SU8 inverted-rib waveguide Bragg grating filter.
    Huang CS; Wang WC
    Appl Opt; 2013 Aug; 52(22):5545-51. PubMed ID: 23913077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold.
    Zhang J; Shen S; Dong XX; Chen LS
    Opt Express; 2014 Jan; 22(2):1842-51. PubMed ID: 24515193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-micrometer soft lithography of a bulk chalcogenide glass.
    Kohoutek T; Orava J; Greer AL; Fudouzi H
    Opt Express; 2013 Apr; 21(8):9584-91. PubMed ID: 23609669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid lithography: combining UV-exposure and two photon direct laser writing.
    Eschenbaum C; Großmann D; Dopf K; Kettlitz S; Bocksrocker T; Valouch S; Lemmer U
    Opt Express; 2013 Dec; 21(24):29921-6. PubMed ID: 24514543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of moiré grating fabrication on metal samples using nanoimprint lithography.
    Tang M; Xie H; Zhu J; Li X; Li Y
    Opt Express; 2012 Jan; 20(3):2942-55. PubMed ID: 22330532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
    Lan H; Liu H
    J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.
    Leem JW; Choi M; Yu JS
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2349-58. PubMed ID: 25622310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns.
    Leem JW; Yeh Y; Yu JS
    Opt Express; 2012 Feb; 20(4):4056-66. PubMed ID: 22418164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer.
    Hiltunen J; Hiltunen M; Puustinen J; Lappalainen J; Karioja P
    Opt Express; 2009 Dec; 17(25):22813-22. PubMed ID: 20052207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing.
    Lin X; Ling T; Subbaraman H; Guo LJ; Chen RT
    Opt Express; 2013 Jan; 21(2):2110-7. PubMed ID: 23389191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and UV-induced bonding.
    Sangermano M; Chiolerio A; Veronese GP; Ortolani L; Rizzoli R; Mancarella F; Morandi V
    Macromol Rapid Commun; 2014 Feb; 35(3):355-9. PubMed ID: 24375728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of transmittance by fabricating broadband subwavelength anti-reflection structures for polycarbonate.
    Jang HS; Kim JH; Kim KS; Jung GY; Lee JJ; Kim GH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):291-5. PubMed ID: 21446442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers.
    Päivänranta B; Sahoo PK; Tocce E; Auzelyte V; Ekinci Y; Solak HH; Liu CC; Stuen KO; Nealey PF; David C
    ACS Nano; 2011 Mar; 5(3):1860-4. PubMed ID: 21323325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.
    Li WD; Chou SY
    Opt Express; 2010 Jan; 18(2):931-7. PubMed ID: 20173915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells.
    Leem JW; Yu JS
    Opt Express; 2012 May; 20(10):A431-40. PubMed ID: 22712092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.