These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24514543)

  • 1. Hybrid lithography: combining UV-exposure and two photon direct laser writing.
    Eschenbaum C; Großmann D; Dopf K; Kettlitz S; Bocksrocker T; Valouch S; Lemmer U
    Opt Express; 2013 Dec; 21(24):29921-6. PubMed ID: 24514543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 120 nm resolution and 55 nm structure size in STED-lithography.
    Wollhofen R; Katzmann J; Hrelescu C; Jacak J; Klar TA
    Opt Express; 2013 May; 21(9):10831-40. PubMed ID: 23669940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thirty-minute total synthesis of microfluidic systems and functionalized porous elements via "living" radical photo-polymerization.
    Abhyankar VV; Hatch AV
    Adv Healthc Mater; 2012 Nov; 1(6):773-8. PubMed ID: 23184830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High numerical aperture hybrid optics for two-photon polymerization.
    Burmeister F; Zeitner UD; Nolte S; Tünnermann A
    Opt Express; 2012 Mar; 20(7):7994-8005. PubMed ID: 22453471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate.
    Venkatakrishnan K; Jariwala S; Tan B
    Opt Express; 2009 Feb; 17(4):2756-62. PubMed ID: 19219180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmittance enhancement of sapphires with antireflective subwavelength grating patterned UV polymer surface structures by soft lithography.
    Lee SH; Leem JW; Yu JS
    Opt Express; 2013 Dec; 21(24):29298-303. PubMed ID: 24514482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures.
    Schell AW; Kaschke J; Fischer J; Henze R; Wolters J; Wegener M; Benson O
    Sci Rep; 2013; 3():1577. PubMed ID: 23546514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.
    Lee JT; George MC; Moore JS; Braun PV
    J Am Chem Soc; 2009 Aug; 131(32):11294-5. PubMed ID: 19637870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.
    Käpylä E; Sedlačík T; Aydogan DB; Viitanen J; Rypáček F; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():280-9. PubMed ID: 25175215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Black silicon: substrate for laser 3D micro/nano-polymerization.
    Žukauskas A; Malinauskas M; Kadys A; Gervinskas G; Seniutinas G; Kandasamy S; Juodkazis S
    Opt Express; 2013 Mar; 21(6):6901-9. PubMed ID: 23546073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of binary radial diffractive optical elements by two-photon polymerization technique.
    Osipov V; Pavelyev V; Kachalov D; Zukauskas A; Chichkov B
    Opt Express; 2010 Dec; 18(25):25808-14. PubMed ID: 21164925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 3D nano-structures using reverse imprint lithography.
    Han KS; Hong SH; Kim KI; Cho JY; Choi KW; Lee H
    Nanotechnology; 2013 Feb; 24(4):045304. PubMed ID: 23291434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.
    Ovsianikov A; Schlie S; Ngezahayo A; Haverich A; Chichkov BN
    J Tissue Eng Regen Med; 2007; 1(6):443-9. PubMed ID: 18265416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct laser writing of three-dimensional narrow bandgap and high refractive-index PbSe structures in a solution.
    Gan Z; Cao Y; Gu M
    Opt Express; 2013 May; 21(9):11202-8. PubMed ID: 23669977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a hybrid microfluidic system incorporating both lithographically patterned microchannels and a 3D fiber-formed microfluidic network.
    Bellan LM; Kniazeva T; Kim ES; Epshteyn AA; Cropek DM; Langer R; Borenstein JT
    Adv Healthc Mater; 2012 Mar; 1(2):164-7. PubMed ID: 22708076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous tilting of micromolds for fabricating polymeric microstructures in microinjection.
    Kim BI; Lee KG; Lee TJ; Choi BG; Park JY; Jung CY; Lee CS; Lee SJ
    Lab Chip; 2013 Nov; 13(22):4321-5. PubMed ID: 24056842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid electrohydrodynamic lithography using low-viscosity polymers.
    Goldberg-Oppenheimer P; Steiner U
    Small; 2010 Jun; 6(11):1248-54. PubMed ID: 20486223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic remastering for reducing feature sizes on UV nanoimprint lithography replica molds.
    Lausecker E; Grydlik M; Brehm M; Bergmair I; Mühlberger M; Fromherz T; Bauer G
    Nanotechnology; 2012 Apr; 23(16):165302. PubMed ID: 22469617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.