These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24514601)

  • 21. Three-dimensional confinement of polaritons in ZnO microcylinder.
    Xu D; Liu W; Zhang S; Shen X; Chen Z
    Opt Express; 2013 Feb; 21(3):3911-6. PubMed ID: 23481847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of hybrid Tamm-plasmon exciton- polaritons with GaAs quantum wells and a MoSe
    Wurdack M; Lundt N; Klaas M; Baumann V; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2017 Aug; 8(1):259. PubMed ID: 28811462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of energy oscillation between strongly-coupled counter-propagating ultra-high Q whispering gallery modes.
    Yoshiki W; Chen-Jinnai A; Tetsumoto T; Tanabe T
    Opt Express; 2015 Nov; 23(24):30851-60. PubMed ID: 26698718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong coupling and laser action of ladder-type oligo(p-phenylene)s in a microcavity.
    Höfner M; Kobin B; Hecht S; Henneberger F
    Chemphyschem; 2014 Dec; 15(17):3805-8. PubMed ID: 25234768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong coupling between surface plasmons and excitons in an organic semiconductor.
    Bellessa J; Bonnand C; Plenet JC; Mugnier J
    Phys Rev Lett; 2004 Jul; 93(3):036404. PubMed ID: 15323846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.
    Chen JR; Lu TC; Wu YC; Lin SC; Hsieh WF; Wang SC; Deng H
    Opt Express; 2011 Feb; 19(5):4101-12. PubMed ID: 21369239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity.
    Li J; Xu C; Nan H; Jiang M; Gao G; Lin Y; Dai J; Zhu G; Ni Z; Wang S; Li Y
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10469-75. PubMed ID: 24950411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rydberg exciton-polaritons in a Cu
    Orfanakis K; Rajendran SK; Walther V; Volz T; Pohl T; Ohadi H
    Nat Mater; 2022 Jul; 21(7):767-772. PubMed ID: 35422507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring Dispersion of Room-Temperature Exciton-Polaritons with Perovskite-Based Subwavelength Metasurfaces.
    Dang NHM; Gerace D; Drouard E; Trippé-Allard G; Lédée F; Mazurczyk R; Deleporte E; Seassal C; Nguyen HS
    Nano Lett; 2020 Mar; 20(3):2113-2119. PubMed ID: 32074449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exciton polaritons confined in a ZnO nanowire cavity.
    van Vugt LK; Rühle S; Ravindran P; Gerritsen HC; Kuipers L; Vanmaekelbergh D
    Phys Rev Lett; 2006 Oct; 97(14):147401. PubMed ID: 17155289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule.
    Holmes RJ; Forrest SR
    Phys Rev Lett; 2004 Oct; 93(18):186404. PubMed ID: 15525188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong Exciton-Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity.
    Flatten LC; Christodoulou S; Patel RK; Buccheri A; Coles DM; Reid BP; Taylor RA; Moreels I; Smith JM
    Nano Lett; 2016 Nov; 16(11):7137-7141. PubMed ID: 27737546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong exciton-photon coupling in an organic single crystal microcavity.
    Kéna-Cohen S; Davanço M; Forrest SR
    Phys Rev Lett; 2008 Sep; 101(11):116401. PubMed ID: 18851303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect.
    Wang YY; Xu CX; Jiang MM; Li JT; Dai J; Lu JF; Li PL
    Nanoscale; 2016 Oct; 8(37):16631-9. PubMed ID: 27430398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Q surface-plasmon-polariton whispering-gallery microcavity.
    Min B; Ostby E; Sorger V; Ulin-Avila E; Yang L; Zhang X; Vahala K
    Nature; 2009 Jan; 457(7228):455-8. PubMed ID: 19158793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards Exciton-Polaritons in an Individual MoS
    Kazanov D; Rakhlin M; Poshakinskiy A; Shubina T
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32093325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of interface disorder on quantum well excitons and microcavity polaritons.
    Savona V
    J Phys Condens Matter; 2007 Jul; 19(29):295208. PubMed ID: 21483060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The study of the behavior of exciton and photon within semiconductor microcavity under hydrostatic pressure].
    Zhang JD; Chen JH; Deng YM; An L; Zhang H; Yang FH; Li GH; Zheng HZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):223-5. PubMed ID: 12961854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond Dynamics of a Polariton Bosonic Cascade at Room Temperature.
    Chen F; Zhou H; Li H; Cao J; Luo S; Sun Z; Zhang Z; Shao Z; Sun F; Zhou B; Dong H; Xu H; Xu H; Kavokin A; Chen Z; Wu J
    Nano Lett; 2022 Mar; 22(5):2023-2029. PubMed ID: 35200029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.