These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24514625)

  • 1. Suppression of transverse stimulated Raman scattering with laser-induced damage array in a large-aperture potassium dihydrogen phosphate crystal.
    Han W; Wang F; Zhou L; Li F; Feng B; Cao H; Zhao J; Li S; Zheng K; Wei X; Gong M; Zheng W
    Opt Express; 2013 Dec; 21(25):30481-91. PubMed ID: 24514625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.
    Demos SG; Raman RN; Yang ST; Negres RA; Schaffers KI; Henesian MA
    Opt Express; 2011 Oct; 19(21):21050-9. PubMed ID: 21997113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the angular dependence of the spontaneous Raman scattering in anisotropic crystalline materials using spherical samples: Potassium dihydrogen phosphate as a case example.
    Kosc TZ; Huang H; Kessler TJ; Maltsev A; Demos SG
    Rev Sci Instrum; 2020 Jan; 91(1):015101. PubMed ID: 32012604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascaded longitudinal stimulated Raman scattering and the frequency doubling process of potassium dihydrogen phosphate crystals.
    Wu Z; Wang Z; Ren H; Qi H; Zhang L; Zhou Y; Gu Q; Sun X; Hu D; Xu X
    J Phys Condens Matter; 2018 Jan; 30(2):02LT01. PubMed ID: 29160770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of surface defects on the laser-induced damage performances of KDP crystal.
    Wang S; Wang J; Xu Q; Lei X; Liu Z; Zhang J
    Appl Opt; 2018 Apr; 57(10):2638-2646. PubMed ID: 29714251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP) Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method.
    Chen Y; Gao H; Wang X; Guo D; Liu Z
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29534032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the laser-induced surface damage of KDP crystal by explosion simulation.
    Wang S; Wang J; Lei X; Liu Z; Zhang J; Xu Q
    Opt Express; 2019 May; 27(11):15142-15158. PubMed ID: 31163715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angular dependence of the transverse Raman scattering in KDP and DKDP in geometries suitable for beam polarization control.
    Kosc TZ; Huang H; Kessler TJ; Demos SG
    Opt Express; 2022 Apr; 30(8):12918-12928. PubMed ID: 35472917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on compensation of suction deformation error of potassium dihydrogen phosphate crystal.
    Tie G; Dai Y; Guan C; Zhu D; Song B
    Appl Opt; 2013 Jan; 52(2):110-6. PubMed ID: 23314625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of the nanosecond-pulse laser damage of KDP surface by the smoothed particle hydrodynamics method.
    Wang S; Wang J; Lei X; Liu Z; Zhang J; Xu Q
    Opt Lett; 2019 Nov; 44(21):5338-5341. PubMed ID: 31675002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses.
    Duchateau G
    Opt Express; 2009 Jun; 17(13):10434-56. PubMed ID: 19550440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage under a 351  nm nanosecond laser.
    Liu Z; Geng F; Li Y; Cheng J; Yang H; Zheng Y; Wang J; Xu Q
    Appl Opt; 2018 Dec; 57(35):10334-10341. PubMed ID: 30645245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser damage threshold of KTiOPO(4).
    Ahmed F
    Appl Opt; 1989 Jan; 28(1):119-22. PubMed ID: 20548436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage analysis and mechanism study of sol-gel coating over KDP crystal under multi-pulse of laser irradiation at low flux.
    You TH; Yang W; Hui HH; Lei XY; Wang TY; Zhang QH; Ju X; Deng XR
    Sci Rep; 2023 Mar; 13(1):3451. PubMed ID: 36859452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating.
    Elhadj S; Steele WA; VanBlarcom DS; Hawley RA; Schaffers KI; Geraghty P
    Appl Opt; 2017 Mar; 56(8):2217-2225. PubMed ID: 28375305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress on deuterated potassium dihydrogen phosphate (DKDP) crystals for high power laser system application.
    Xu M; Liu B; Zhang L; Ren H; Gu Q; Sun X; Wang S; Xu X
    Light Sci Appl; 2022 Jul; 11(1):241. PubMed ID: 35906198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model Development for Nanosecond Laser-Induced Damage Caused by Manufacturing-Induced Defects on Potassium Dihydrogen Phosphate Crystals.
    Yang H; Cheng J; Liu Z; Liu Q; Zhao L; Tan C; Wang J; Chen M
    ACS Omega; 2020 Aug; 5(31):19884-19895. PubMed ID: 32803085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High rejection ruby filter for laser light scattering experiments.
    Gowers C; Hirsch K; Nielsen P; Salzmann H
    Appl Opt; 1988 Sep; 27(17):3625-9. PubMed ID: 20539432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harmonic conversion of large-aperture 1.05-microm laser beams for inertial-confinement fusion research.
    Wegner PJ; Henesian MA; Speck DR; Bibeau C; Ehrlich RB; Laumann CW; Lawson JK; Weiland TL
    Appl Opt; 1992 Oct; 31(30):6414-26. PubMed ID: 20733856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers.
    Rhodes MA; Woods B; Deyoreo JJ; Roberts D; Atherton LJ
    Appl Opt; 1995 Aug; 34(24):5312-25. PubMed ID: 21060350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.