These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24514677)

  • 1. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.
    Kurselis K; Kiyan R; Bagratashvili VN; Popov VK; Chichkov BN
    Opt Express; 2013 Dec; 21(25):31029-35. PubMed ID: 24514677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton fabrication of freeform polymer microstructures with gold nanorods.
    Kuo WS; Lien CH; Cho KC; Chang CY; Lin CY; Huang LL; Campagnola PJ; Dong CY; Chen SJ
    Opt Express; 2010 Dec; 18(26):27550-9. PubMed ID: 21197029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.
    Ovsianikov A; Schlie S; Ngezahayo A; Haverich A; Chichkov BN
    J Tissue Eng Regen Med; 2007; 1(6):443-9. PubMed ID: 18265416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond Laser 3D-printing of Conductive Microelectronics for Potential Biomedical Applications.
    Dadras-Toussi O; Khorrami M; Abidian MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1197-1200. PubMed ID: 34891501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization.
    Engelhardt S; Hoch E; Borchers K; Meyer W; Krüger H; Tovar GE; Gillner A
    Biofabrication; 2011 Jun; 3(2):025003. PubMed ID: 21562366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility.
    Suter M; Zhang L; Siringil EC; Peters C; Luehmann T; Ergeneman O; Peyer KE; Nelson BJ; Hierold C
    Biomed Microdevices; 2013 Dec; 15(6):997-1003. PubMed ID: 23846247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Black silicon: substrate for laser 3D micro/nano-polymerization.
    Žukauskas A; Malinauskas M; Kadys A; Gervinskas G; Seniutinas G; Kandasamy S; Juodkazis S
    Opt Express; 2013 Mar; 21(6):6901-9. PubMed ID: 23546073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation.
    Li YC; Cheng LC; Chang CY; Lien CH; Campagnola PJ; Chen SJ
    Opt Express; 2012 Aug; 20(17):19030-8. PubMed ID: 23038543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer.
    Ma Y; Cheung W; Wei D; Bogozi A; Chiu PL; Wang L; Pontoriero F; Mendelsohn R; He H
    ACS Nano; 2008 Jun; 2(6):1197-204. PubMed ID: 19206337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges.
    Mao J; Zhang Z
    Adv Exp Med Biol; 2018; 1078():347-370. PubMed ID: 30357632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Room temperature solid-state synthesis of a conductive polymer for applications in stable I₂-free dye-sensitized solar cells.
    Kim B; Koh JK; Kim J; Chi WS; Kim JH; Kim E
    ChemSusChem; 2012 Nov; 5(11):2173-80. PubMed ID: 22945546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity.
    Le Ouay B; Boudot M; Kitao T; Yanagida T; Kitagawa S; Uemura T
    J Am Chem Soc; 2016 Aug; 138(32):10088-91. PubMed ID: 27485526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity.
    Zhang W; Yang FK; Pan Z; Zhang J; Zhao B
    Macromol Rapid Commun; 2014 Feb; 35(3):350-4. PubMed ID: 24338801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization.
    Li L; Gattass RR; Gershgoren E; Hwang H; Fourkas JT
    Science; 2009 May; 324(5929):910-3. PubMed ID: 19359543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications.
    Leclerc E; Furukawa KS; Miyata F; Sakai Y; Ushida T; Fujii T
    Biomaterials; 2004 Aug; 25(19):4683-90. PubMed ID: 15120514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrically switchable polypyrrole film for the tunable release of progesterone.
    Svirskis D; Sharma M; Yu Y; Garg S
    Ther Deliv; 2013 Mar; 4(3):307-13. PubMed ID: 23442078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of functionalized asymmetric star polymers containing conductive polyacetylene segments by living anionic polymerization.
    Zhao Y; Higashihara T; Sugiyama K; Hirao A
    J Am Chem Soc; 2005 Oct; 127(41):14158-9. PubMed ID: 16218590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization.
    Cao Y; Gan Z; Jia B; Evans RA; Gu M
    Opt Express; 2011 Sep; 19(20):19486-94. PubMed ID: 21996889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse-exposure technique in holographic two-photon polymerization.
    Takahashi H; Hasegawa S; Takita A; Hayasaki Y
    Opt Express; 2008 Oct; 16(21):16592-9. PubMed ID: 18852768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.