These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24514677)

  • 21. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.
    Kim K; Zhu W; Qu X; Aaronson C; McCall WR; Chen S; Sirbuly DJ
    ACS Nano; 2014 Oct; 8(10):9799-806. PubMed ID: 25046646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline.
    Hu W; Chen S; Yang Z; Liu L; Wang H
    J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs.
    Zhou J; Lubineau G
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6189-200. PubMed ID: 23758203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials.
    Ovsianikov A; Shizhou X; Farsari M; Vamvakaki M; Fotakis C; Chichkov BN
    Opt Express; 2009 Feb; 17(4):2143-8. PubMed ID: 19219118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single step self-enclosed fluidic channels via Two Photon Absorption (TPA) polymerization.
    Jariwala S; Venkatakrishnan K; Tan B
    Opt Express; 2010 Jan; 18(2):1630-6. PubMed ID: 20173990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrically conductive scaffolds mimicking the hierarchical structure of cardiac myofibers.
    Ul Haq A; Montaina L; Pescosolido F; Carotenuto F; Trovalusci F; De Matteis F; Tamburri E; Di Nardo P
    Sci Rep; 2023 Feb; 13(1):2863. PubMed ID: 36804588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites.
    Yang L; Kong J; Yee WA; Liu W; Phua SL; Toh CL; Huang S; Lu X
    Nanoscale; 2012 Aug; 4(16):4968-71. PubMed ID: 22797422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.
    Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H
    J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-stabilized nanoparticles of intrinsically conducting copolymers from 5-sulfonic-2-anisidine.
    Li XG; Lü QF; Huang MR
    Small; 2008 Aug; 4(8):1201-9. PubMed ID: 18666162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realization of binary radial diffractive optical elements by two-photon polymerization technique.
    Osipov V; Pavelyev V; Kachalov D; Zukauskas A; Chichkov B
    Opt Express; 2010 Dec; 18(25):25808-14. PubMed ID: 21164925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-aligned nanolithography by selective polymer dissolution.
    Zhang H; Wong CL; Hao Y; Wang R; Liu X; Stellacci F; Thong JT
    Nanoscale; 2010 Oct; 2(10):2302-6. PubMed ID: 20835445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maximum conductivity of packed nanoparticles and their polymer composites.
    Untereker D; Lyu S; Schley J; Martinez G; Lohstreter L
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):97-101. PubMed ID: 20355760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator.
    Nguyen AK; Gittard SD; Koroleva A; Schlie S; Gaidukeviciute A; Chichkov BN; Narayan RJ
    Regen Med; 2013 Nov; 8(6):725-38. PubMed ID: 24147528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers.
    Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y
    Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method.
    Li Y; Zhao L; Shimizu H
    Macromol Rapid Commun; 2011 Feb; 32(3):289-94. PubMed ID: 21433173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine.
    Raimondi MT; Eaton SM; Nava MM; Laganà M; Cerullo G; Osellame R
    J Appl Biomater Funct Mater; 2012 Jun; 10(1):55-65. PubMed ID: 22562455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid lithography: combining UV-exposure and two photon direct laser writing.
    Eschenbaum C; Großmann D; Dopf K; Kettlitz S; Bocksrocker T; Valouch S; Lemmer U
    Opt Express; 2013 Dec; 21(24):29921-6. PubMed ID: 24514543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses.
    Malinauskas M; Zukauskas A; Bickauskaite G; Gadonas R; Juodkazis S
    Opt Express; 2010 May; 18(10):10209-21. PubMed ID: 20588875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.