These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24514690)

  • 1. High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations.
    Wang K; Nirmalathas A; Lim C; Skafidas E; Alameh K
    Opt Express; 2013 Dec; 21(25):31166-75. PubMed ID: 24514690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects.
    Wang K; Nirmalathas A; Lim C; Skafidas E; Alameh K
    Opt Express; 2013 Feb; 21(3):2850-61. PubMed ID: 23481743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability.
    Wang K; Nirmalathas A; Lim C; Skafidas E; Alameh K
    Opt Express; 2013 Jul; 21(13):15395-400. PubMed ID: 23842326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of 3×3 10 Gb/s reconfigurable free space optical card-to-card interconnects.
    Wang K; Nirmalathas A; Lim C; Skafidas E; Alameh K
    Opt Lett; 2012 Jul; 37(13):2553-5. PubMed ID: 22743452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of free-space based 120 Gb/s reconfigurable card-to-card optical interconnects.
    Wang K; Nirmalathas A; Lim C; Skafidas E; Alameh K
    Opt Lett; 2014 Oct; 39(19):5717-20. PubMed ID: 25360967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed reconfigurable free-space optical interconnects with carrierless-amplitude-phase modulation and filter-enhanced spatial modulation.
    Wang K
    Opt Lett; 2020 Oct; 45(19):5476-5479. PubMed ID: 33001923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors.
    Aljada M; Alameh KE; Lee YT; Chung IS
    Opt Express; 2006 Jul; 14(15):6823-36. PubMed ID: 19516864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-D integrated heterogeneous intra-chip free-space optical interconnect.
    Ciftcioglu B; Berman R; Wang S; Hu J; Savidis I; Jain M; Moore D; Huang M; Friedman EG; Wicks G; Wu H
    Opt Express; 2012 Feb; 20(4):4331-45. PubMed ID: 22418191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.
    Shen M; Xiao F; Alameh K
    Opt Express; 2009 Dec; 17(25):22680-8. PubMed ID: 20052194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerative polymeric bus architecture for board-level optical interconnects.
    Bamiedakis N; Hashim A; Penty RV; White IH
    Opt Express; 2012 May; 20(11):11625-36. PubMed ID: 22714148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomechanical design and characterization of a printed-circuit-board-based free-space optical interconnect package.
    Zheng X; Marchand PJ; Huang D; Kibar O; Ozkan NS; Esener SC
    Appl Opt; 1999 Sep; 38(26):5631-40. PubMed ID: 18324074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-space optical interconnection scheme.
    Dickinson A; Prise ME
    Appl Opt; 1990 May; 29(14):2001-5. PubMed ID: 20563126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerancing of board-level-free-space optical interconnects.
    Zaleta D; Patra S; Ozguz V; Ma J; Lee SH
    Appl Opt; 1996 Mar; 35(8):1317-27. PubMed ID: 21085244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode partition noise mitigation for VCSEL-MMF links by using wavefront shaping technique.
    Liang C; Zhang W; Ge L; He Z
    Opt Express; 2018 Oct; 26(22):28641-28650. PubMed ID: 30470037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichip module with planar-integrated free-space optical vector-matrix-type interconnects.
    Gruber M
    Appl Opt; 2004 Jan; 43(2):463-70. PubMed ID: 14735965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct ink writing 3D-printed optical waveguides for multi-layer interconnect.
    Lin C; Jia X; Chen C; Yang C; Li X; Shao M; Yu Y; Zhang Z
    Opt Express; 2023 Mar; 31(7):11913-11922. PubMed ID: 37155815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grain-size considerations for optoelectronic multistage interconnection networks.
    Krishnamoorthy AV; Marchand PJ; Kiamilev FE; Esener SC
    Appl Opt; 1992 Sep; 31(26):5480-507. PubMed ID: 20733733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and performance of a multiprocessor system employing board-to-board free-space optical interconnections: COSINE-1.
    Sakano T; Matsumoto T; Noguchi K; Sawabe T
    Appl Opt; 1991 Jun; 30(17):2334-43. PubMed ID: 20700211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed free-space interconnect based on optical ring topology: experimental demonstration.
    Wang JM; Kanterakis E; Katz A; Zhang Y; Li Y; Murray N
    Appl Opt; 1994 Sep; 33(26):6181-7. PubMed ID: 20936035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Si
    Hu X; Girardi M; Ye Z; Muñoz P; Larsson A; Torres-Company V
    Opt Express; 2020 Apr; 28(9):13019-13031. PubMed ID: 32403784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.