These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 24514717)
1. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
2. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
3. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials. Mafusire C; Krüger TPJ J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326 [TBL] [Abstract][Full Text] [Related]
4. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set. Zhao C; Burge JH Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361 [TBL] [Abstract][Full Text] [Related]
5. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
7. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
8. Generalization of Zernike polynomials for regular portions of circles and ellipses. Navarro R; López JL; Díaz JA; Sinusía EP Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506 [TBL] [Abstract][Full Text] [Related]
9. Zernike radial slope polynomials for wavefront reconstruction and refraction. Nam J; Thibos LN; Iskander DR J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1035-48. PubMed ID: 19340280 [TBL] [Abstract][Full Text] [Related]
11. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Lee H Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184 [TBL] [Abstract][Full Text] [Related]
12. Zernike-like systems in polygons and polygonal facets. Ferreira C; López JL; Navarro R; Sinusía EP Appl Opt; 2015 Jul; 54(21):6575-83. PubMed ID: 26367845 [TBL] [Abstract][Full Text] [Related]
13. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials. Rahbar K; Faez K; Attaran Kakhki E J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854 [TBL] [Abstract][Full Text] [Related]
14. Vector polynomials for direct analysis of circular wavefront slope data. Mahajan VN; Acosta E J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1908-1913. PubMed ID: 29036062 [TBL] [Abstract][Full Text] [Related]
15. Orthonormal polynomials for annular pupil including a cross-shaped obstruction. Dai F; Wang X; Sasaki O Appl Opt; 2015 Apr; 54(10):2922-8. PubMed ID: 25967208 [TBL] [Abstract][Full Text] [Related]
16. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils. Díaz JA; Mahajan VN Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982 [TBL] [Abstract][Full Text] [Related]
17. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]