These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 24514723)

  • 1. Bifunctional plasmonic metamaterials enabled by subwavelength nano-notches for broadband, polarization-independent enhanced optical transmission and passive beam-steering.
    Jiang ZH; Lin L; Bossard JA; Werner DH
    Opt Express; 2013 Dec; 21(25):31492-505. PubMed ID: 24514723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions.
    Jiang ZH; Yun S; Lin L; Bossard JA; Werner DH; Mayer TS
    Sci Rep; 2013; 3():1571. PubMed ID: 23535875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gain and plasmon dynamics in active negative-index metamaterials.
    Wuestner S; Pusch A; Tsakmakidis KL; Hamm JM; Hess O
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3525-50. PubMed ID: 21807726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials.
    Li YR; Hung YC
    Opt Express; 2015 Jun; 23(13):16772-81. PubMed ID: 26191689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-loss impedance-matched optical metamaterials with zero-phase delay.
    Yun S; Jiang ZH; Xu Q; Liu Z; Werner DH; Mayer TS
    ACS Nano; 2012 May; 6(5):4475-82. PubMed ID: 22530626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coaxial plasmonic waveguide array as a negative-index metamaterial.
    Rodríguez-Fortuño FJ; García-Meca C; Ortuño R; Martí J; Martínez A
    Opt Lett; 2009 Nov; 34(21):3325-7. PubMed ID: 19881582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials.
    Ginzburg P; Rodríguez Fortuño FJ; Wurtz GA; Dickson W; Murphy A; Morgan F; Pollard RJ; Iorsh I; Atrashchenko A; Belov PA; Kivshar YS; Nevet A; Ankonina G; Orenstein M; Zayats AV
    Opt Express; 2013 Jun; 21(12):14907-17. PubMed ID: 23787679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective terahertz bandpass filters based on trapped mode excitation.
    Paul O; Beigang R; Rahm M
    Opt Express; 2009 Oct; 17(21):18590-5. PubMed ID: 20372589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Based Controllable Broadband Terahertz Metamaterial Absorber with Transmission Band.
    Zhou Q; Zha S; Liu P; Liu C; Bian LA; Zhang J; Liu H; Ding L
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enlarging the negative-index bandwidth of optical metamaterials by hybridized plasmon resonances.
    Ortuño R; García-Meca C; Rodríguez-Fortuño FJ; Martínez A
    Opt Lett; 2010 Dec; 35(24):4205-7. PubMed ID: 21165138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-dielectric-metal plasmonic resonators for active beam steering in the infrared.
    Battal E; Okyay AK
    Opt Lett; 2013 Mar; 38(6):983-5. PubMed ID: 23503281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waveguide-fed optical hybrid plasmonic patch nano-antenna.
    Yousefi L; Foster AC
    Opt Express; 2012 Jul; 20(16):18326-35. PubMed ID: 23038383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates.
    Jiang ZH; Lin L; Ma D; Yun S; Werner DH; Liu Z; Mayer TS
    Sci Rep; 2014 Dec; 4():7511. PubMed ID: 25524830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.
    Kapitanova PV; Ginzburg P; Rodríguez-Fortuño FJ; Filonov DS; Voroshilov PM; Belov PA; Poddubny AN; Kivshar YS; Wurtz GA; Zayats AV
    Nat Commun; 2014; 5():3226. PubMed ID: 24526135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of metamaterial anisotropy engineering for broadband on-chip polarization beam splitting.
    Herrero-Bermello A; Dias-Ponte A; Luque-González JM; Ortega-Moñux A; Velasco AV; Cheben P; Halir R
    Opt Express; 2020 May; 28(11):16385-16393. PubMed ID: 32549462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant polarization anisotropic optical response from anodic aluminum oxide templates embedded with plasmonic metamaterials.
    Feng Y; Leiderer P; Zhao R; Xiao X; Giannini V; Maier SA; Nemitz CA; Lin Z; Ding N; Kang G; Cheng D; Schmidt-Mende L; Huang L; Wang Y
    Opt Express; 2020 Sep; 28(20):29513-29528. PubMed ID: 33114850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption.
    Lobet M; Lard M; Sarrazin M; Deparis O; Henrard L
    Opt Express; 2014 May; 22(10):12678-90. PubMed ID: 24921385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.