These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24514730)

  • 1. Double-graphene-layer terahertz laser: concept, characteristics, and comparison.
    Ryzhii V; Dubinov AA; Otsuji T; Aleshkin VY; Ryzhii M; Shur M
    Opt Express; 2013 Dec; 21(25):31567-77. PubMed ID: 24514730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure.
    Dubinov AA; Bylinkin A; Aleshkin VY; Ryzhii V; Otsuji T; Svintsov D
    Opt Express; 2016 Dec; 24(26):29603-29612. PubMed ID: 28059347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Terahertz Transparent Graphene-Based Absorber.
    D'Aloia AG; D'Amore M; Sarto MS
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32353933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy.
    Tanabe T; Ragam S; Oyama Y
    Rev Sci Instrum; 2009 Nov; 80(11):113105. PubMed ID: 19947715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation.
    Hu Q; Williams BS; Kumar S; Callebaut H; Reno JL
    Philos Trans A Math Phys Eng Sci; 2004 Feb; 362(1815):233-47; discussion 247-9. PubMed ID: 15306517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A terahertz photomixer based on plasmonic nanoantennas coupled to a graphene emitter.
    Chen PY; Alù A
    Nanotechnology; 2013 Nov; 24(45):455202. PubMed ID: 24129387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Far-infrared and terahertz emitting diodes based on graphene/black-P and graphene/MoS
    Ryzhii V; Ryzhii M; Maltsev PP; Karasik VE; Mitin V; Shur MS; Otsuji T
    Opt Express; 2020 Aug; 28(16):24136-24151. PubMed ID: 32752399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene.
    Zhou Y; Xu X; Fan H; Ren Z; Bai J; Wang L
    Phys Chem Chem Phys; 2013 Apr; 15(14):5084-90. PubMed ID: 23450161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable terahertz reflection of graphene via ionic liquid gating.
    Wu Y; Qiu X; Liu H; Liu J; Chen Y; Ke L; Yang H
    Nanotechnology; 2017 Mar; 28(9):095201. PubMed ID: 28067205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.
    Lee CK; Yang CS; Lin SH; Huang SH; Wada O; Pan CL
    Opt Express; 2011 Nov; 19(24):23689-97. PubMed ID: 22109395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier-carrier scattering and negative dynamic conductivity in pumped graphene.
    Svintsov D; Ryzhii V; Satou A; Otsuji T; Vyurkov V
    Opt Express; 2014 Aug; 22(17):19873-86. PubMed ID: 25321198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Note: Development of a high resolution and wide band terahertz spectrometer based on a 1 μm-band external cavity diode laser.
    Kitahara K; Oto K; Nakajima M; Muro K
    Rev Sci Instrum; 2013 Dec; 84(12):126102. PubMed ID: 24387478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle.
    Akbari K; Mišković ZL; Segui S; Gervasoni JL; Arista NR
    Nanotechnology; 2018 Jun; 29(22):225201. PubMed ID: 29517490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel structure for tunable terahertz absorber based on graphene.
    Xu BZ; Gu CQ; Li Z; Niu ZY
    Opt Express; 2013 Oct; 21(20):23803-11. PubMed ID: 24104291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.
    Kim N; Han SP; Ko H; Leem YA; Ryu HC; Lee CW; Lee D; Jeon MY; Noh SK; Park KH
    Opt Express; 2011 Aug; 19(16):15397-403. PubMed ID: 21934903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling.
    Fathololoumi S; Dupont E; Chan CW; Wasilewski ZR; Laframboise SR; Ban D; Mátyás A; Jirauschek C; Hu Q; Liu HC
    Opt Express; 2012 Feb; 20(4):3866-76. PubMed ID: 22418143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz semiconductor-heterostructure laser.
    Köhler R; Tredicucci A; Beltram F; Beere HE; Linfield EH; Davies AG; Ritchie DA; Iotti RC; Rossi F
    Nature; 2002 May; 417(6885):156-9. PubMed ID: 12000955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THz photomixing synthesizer based on a fiber frequency comb.
    Mouret G; Hindle F; Cuisset A; Yang C; Bocquet R; Lours M; Rovera D
    Opt Express; 2009 Nov; 17(24):22031-40. PubMed ID: 19997448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.