These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24514733)

  • 1. Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope.
    Chung HY; Kuo WC; Cheng YH; Yu CH; Chia SH; Lin CY; Chen JS; Tsai HJ; Fedotov AB; Ivanov AA; Zheltikov AM; Sun CK
    Opt Express; 2013 Dec; 21(25):31604-14. PubMed ID: 24514733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturized multiphoton microscope with a 24Hz frame-rate.
    Liu TM; Chan MC; Chen IH; Chia SH; Sun CK
    Opt Express; 2008 Jul; 16(14):10501-6. PubMed ID: 18607463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope.
    Chia SH; Yu CH; Lin CH; Cheng NC; Liu TM; Chan MC; Chen IH; Sun CK
    Opt Express; 2010 Aug; 18(16):17382-91. PubMed ID: 20721125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet gradient index lens for deep in vivo multiphoton microscopy.
    Murray TA; Levene MJ
    J Biomed Opt; 2012 Feb; 17(2):021106. PubMed ID: 22463024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended depth of field microscopy for rapid volumetric two-photon imaging.
    Thériault G; De Koninck Y; McCarthy N
    Opt Express; 2013 Apr; 21(8):10095-104. PubMed ID: 23609714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes.
    Wang Y; Kumar K; Wang L; Zhang X
    Opt Express; 2012 Mar; 20(6):6657-68. PubMed ID: 22418549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy.
    Yu JY; Holland DB; Blake GA; Guo CL
    Opt Express; 2013 Jan; 21(2):2097-109. PubMed ID: 23389190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.
    Sinefeld D; Paudel HP; Ouzounov DG; Bifano TG; Xu C
    Opt Express; 2015 Nov; 23(24):31472-83. PubMed ID: 26698772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing.
    Vaziri A; Shank CV
    Opt Express; 2010 Sep; 18(19):19645-55. PubMed ID: 20940859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 0.4-mm-diameter probe for nonlinear optical imaging.
    Bao H; Gu M
    Opt Express; 2009 Jun; 17(12):10098-104. PubMed ID: 19506662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope.
    Yang L; Wang J; Tian G; Yuan J; Liu Q; Fu L
    Opt Express; 2016 Jan; 24(1):473-84. PubMed ID: 26832278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens.
    Le Harzic R; Weinigel M; Riemann I; König K; Messerschmidt B
    Opt Express; 2008 Dec; 16(25):20588-96. PubMed ID: 19065197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror.
    Piyawattanametha W; Cocker ED; Burns LD; Barretto RP; Jung JC; Ra H; Solgaard O; Schnitzer MJ
    Opt Lett; 2009 Aug; 34(15):2309-11. PubMed ID: 19649080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigid and high-numerical-aperture two-photon fluorescence endoscope.
    Le Harzic R; Riemann I; Weinigel M; König K; Messerschmidt B
    Appl Opt; 2009 Jun; 48(18):3396-400. PubMed ID: 19543347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics improves multiphoton super-resolution imaging.
    Zheng W; Wu Y; Winter P; Fischer R; Nogare DD; Hong A; McCormick C; Christensen R; Dempsey WP; Arnold DB; Zimmerberg J; Chitnis A; Sellers J; Waterman C; Shroff H
    Nat Methods; 2017 Sep; 14(9):869-872. PubMed ID: 28628128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEMS-based handheld confocal microscope for in-vivo skin imaging.
    Arrasmith CL; Dickensheets DL; Mahadevan-Jansen A
    Opt Express; 2010 Feb; 18(4):3805-19. PubMed ID: 20389391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon.
    Dufour P; Piché M; De Koninck Y; McCarthy N
    Appl Opt; 2006 Dec; 45(36):9246-52. PubMed ID: 17151766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection.
    McMullen JD; Zipfel WR
    Opt Express; 2010 Mar; 18(6):5390-8. PubMed ID: 20389554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon spectral imaging with high temporal and spectral resolution.
    Im KB; Kang MS; Kim J; Bestvater F; Seghiri Z; Wachsmuth M; Grailhe R
    Opt Express; 2010 Dec; 18(26):26905-14. PubMed ID: 21196967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror.
    Piyawattanametha W; Barretto RP; Ko TH; Flusberg BA; Cocker ED; Ra H; Lee D; Solgaard O; Schnitzer MJ
    Opt Lett; 2006 Jul; 31(13):2018-20. PubMed ID: 16770418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.