BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24514733)

  • 1. Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope.
    Chung HY; Kuo WC; Cheng YH; Yu CH; Chia SH; Lin CY; Chen JS; Tsai HJ; Fedotov AB; Ivanov AA; Zheltikov AM; Sun CK
    Opt Express; 2013 Dec; 21(25):31604-14. PubMed ID: 24514733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturized multiphoton microscope with a 24Hz frame-rate.
    Liu TM; Chan MC; Chen IH; Chia SH; Sun CK
    Opt Express; 2008 Jul; 16(14):10501-6. PubMed ID: 18607463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope.
    Chia SH; Yu CH; Lin CH; Cheng NC; Liu TM; Chan MC; Chen IH; Sun CK
    Opt Express; 2010 Aug; 18(16):17382-91. PubMed ID: 20721125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singlet gradient index lens for deep in vivo multiphoton microscopy.
    Murray TA; Levene MJ
    J Biomed Opt; 2012 Feb; 17(2):021106. PubMed ID: 22463024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended depth of field microscopy for rapid volumetric two-photon imaging.
    Thériault G; De Koninck Y; McCarthy N
    Opt Express; 2013 Apr; 21(8):10095-104. PubMed ID: 23609714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic integration of binary-phase Fresnel zone plate objectives on 2-axis scanning micromirrors for compact microscopes.
    Wang Y; Kumar K; Wang L; Zhang X
    Opt Express; 2012 Mar; 20(6):6657-68. PubMed ID: 22418549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy.
    Yu JY; Holland DB; Blake GA; Guo CL
    Opt Express; 2013 Jan; 21(2):2097-109. PubMed ID: 23389190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence.
    Sinefeld D; Paudel HP; Ouzounov DG; Bifano TG; Xu C
    Opt Express; 2015 Nov; 23(24):31472-83. PubMed ID: 26698772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing.
    Vaziri A; Shank CV
    Opt Express; 2010 Sep; 18(19):19645-55. PubMed ID: 20940859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 0.4-mm-diameter probe for nonlinear optical imaging.
    Bao H; Gu M
    Opt Express; 2009 Jun; 17(12):10098-104. PubMed ID: 19506662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope.
    Yang L; Wang J; Tian G; Yuan J; Liu Q; Fu L
    Opt Express; 2016 Jan; 24(1):473-84. PubMed ID: 26832278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens.
    Le Harzic R; Weinigel M; Riemann I; König K; Messerschmidt B
    Opt Express; 2008 Dec; 16(25):20588-96. PubMed ID: 19065197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror.
    Piyawattanametha W; Cocker ED; Burns LD; Barretto RP; Jung JC; Ra H; Solgaard O; Schnitzer MJ
    Opt Lett; 2009 Aug; 34(15):2309-11. PubMed ID: 19649080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rigid and high-numerical-aperture two-photon fluorescence endoscope.
    Le Harzic R; Riemann I; Weinigel M; König K; Messerschmidt B
    Appl Opt; 2009 Jun; 48(18):3396-400. PubMed ID: 19543347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics improves multiphoton super-resolution imaging.
    Zheng W; Wu Y; Winter P; Fischer R; Nogare DD; Hong A; McCormick C; Christensen R; Dempsey WP; Arnold DB; Zimmerberg J; Chitnis A; Sellers J; Waterman C; Shroff H
    Nat Methods; 2017 Sep; 14(9):869-872. PubMed ID: 28628128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEMS-based handheld confocal microscope for in-vivo skin imaging.
    Arrasmith CL; Dickensheets DL; Mahadevan-Jansen A
    Opt Express; 2010 Feb; 18(4):3805-19. PubMed ID: 20389391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon.
    Dufour P; Piché M; De Koninck Y; McCarthy N
    Appl Opt; 2006 Dec; 45(36):9246-52. PubMed ID: 17151766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection.
    McMullen JD; Zipfel WR
    Opt Express; 2010 Mar; 18(6):5390-8. PubMed ID: 20389554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon spectral imaging with high temporal and spectral resolution.
    Im KB; Kang MS; Kim J; Bestvater F; Seghiri Z; Wachsmuth M; Grailhe R
    Opt Express; 2010 Dec; 18(26):26905-14. PubMed ID: 21196967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror.
    Piyawattanametha W; Barretto RP; Ko TH; Flusberg BA; Cocker ED; Ra H; Lee D; Solgaard O; Schnitzer MJ
    Opt Lett; 2006 Jul; 31(13):2018-20. PubMed ID: 16770418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.