These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24514733)

  • 61. Correcting distorted optics: back to the basics.
    Heintzmann R
    Nat Methods; 2010 Feb; 7(2):108-10. PubMed ID: 20111036
    [No Abstract]   [Full Text] [Related]  

  • 62. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.
    Wen W; Wang Y; Liu H; Wang K; Qiu P; Wang K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28766923
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
    Ji N; Milkie DE; Betzig E
    Nat Methods; 2010 Feb; 7(2):141-7. PubMed ID: 20037592
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging.
    He RY; Su YD; Cho KC; Lin CY; Chang NS; Chang CH; Chen SJ
    Opt Express; 2009 Apr; 17(8):5987-97. PubMed ID: 19365417
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Combining microscopy with mesoscopy using optical and optoacoustic label-free modes.
    Soliman D; Tserevelakis GJ; Omar M; Ntziachristos V
    Sci Rep; 2015 Aug; 5():12902. PubMed ID: 26306396
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy.
    Cha JW; Ballesta J; So PT
    J Biomed Opt; 2010; 15(4):046022. PubMed ID: 20799824
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism.
    Zeng S; Lv X; Zhan C; Chen WR; Xiong W; Jacques SL; Luo Q
    Opt Lett; 2006 Apr; 31(8):1091-3. PubMed ID: 16625913
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation.
    Wu Y; Zhang Y; Xi J; Li MJ; Li X
    J Biomed Opt; 2010; 15(6):060506. PubMed ID: 21198147
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Micro objective lens with NA 0.65 for the blue-light small-form-factor optical pickup head.
    Shih HF; Lee YC; Chiu Y; Chao DW; Lin GD; Lu CS; Chiou JC
    Opt Express; 2008 Aug; 16(17):13150-7. PubMed ID: 18711553
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control.
    Ogilvie JP; Kubarych KJ; Alexandrou A; Joffre M
    Opt Lett; 2005 Apr; 30(8):911-3. PubMed ID: 15865396
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning.
    Tang S; Jung W; McCormick D; Xie T; Su J; Ahn YC; Tromberg BJ; Chen Z
    J Biomed Opt; 2009; 14(3):034005. PubMed ID: 19566298
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fabry-Perot-based Fourier-transform hyperspectral imaging allows multi-labeled fluorescence analysis.
    Pisani M; Zucco M
    Appl Opt; 2014 May; 53(14):2983-7. PubMed ID: 24922016
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vivo confocal and multiphoton microendoscopy.
    Kim P; Puoris'haag M; Côté D; Lin CP; Yun SH
    J Biomed Opt; 2008; 13(1):010501. PubMed ID: 18315346
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning.
    Wang TD; Contag CH; Mandella MJ; Chan NY; Kino GS
    J Biomed Opt; 2004; 9(4):735-42. PubMed ID: 15250760
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery.
    Liu JT; Mandella MJ; Loewke NO; Haeberle H; Ra H; Piyawattanametha W; Solgaard O; Kino GS; Contag CH
    J Biomed Opt; 2010; 15(2):026029. PubMed ID: 20459274
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract.
    Piyawattanametha W; Ra H; Qiu Z; Friedland S; Liu JT; Loewke K; Kino GS; Solgaard O; Wang TD; Mandella MJ; Contag CH
    J Biomed Opt; 2012 Feb; 17(2):021102. PubMed ID: 22463020
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy.
    Leray A; Lillis K; Mertz J
    Biophys J; 2008 Feb; 94(4):1449-58. PubMed ID: 17951295
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.
    Wang C; Ji N
    Opt Lett; 2012 Jun; 37(11):2001-3. PubMed ID: 22660101
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy.
    Lee JH; Kim DH; Song WK; Oh MK; Ko DK
    J Biomed Opt; 2015 May; 20(5):56013. PubMed ID: 26021718
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultra-large field-of-view two-photon microscopy.
    Tsai PS; Mateo C; Field JJ; Schaffer CB; Anderson ME; Kleinfeld D
    Opt Express; 2015 Jun; 23(11):13833-47. PubMed ID: 26072755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.